Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.01.2010, Qupperneq 113

Jökull - 01.01.2010, Qupperneq 113
The Kerlingar fault, Northeast Iceland Kerlingar fault. That is unlikely since the easternmost visible part of the Húsavík fault is located 65 km west of the Kerlingar fault. Secondly, the change in orien- tation of fractures in the area should happen abruptly where the fractures and the Húsavík transform fault meet. That is not the case in the area near the Kerl- ingar fault. There, the change of orientation is grad- ual along the border of the rift zone, suggesting even more regional-scale processes. In the third point, it is suggested that the Kerling- ar fault was formed (or reactivated) due to a landrise during the last deglaciation. This can occur as the hot- ter and less viscous NVZ should react differently to unloading due to deglaciation than the colder, thicker and more viscous EFB block. The reaction to unloading is both elastic and vis- cous, partly instantaneous and partly extending over a period of time. Physical properties, i.e. elastic con- stants, viscosity and density, may differ between the NVZ and the EFB, increasing differential stress and inducing faulting between the NVZ and the EFB. a) Effective Young’s modulus Sudden pressure change at the surface leads to instan- taneous elastic reaction of the crust which depends on the effective Young’s modulus, which again is in- versely dependent on crustal thickness. The elastic rebound of the crust happens relatively fast during deglaciation. Variation in Young’s modulus should lead to higher uplift of the EFB than the NVZ (on the order of few tens of centimeters). If this effect was the only effect to cause the formation of the Kerlingar fault, the fault should therefore have a throw towards the west and not towards the east as observed. There- fore, this effect cannot be the only cause of formation of the Kerlingar fault. b) Effective viscosity Lower viscosity material responds more rapidly to de- loading than higher viscosity material with a linear relation between crustal relaxation time and viscosity (e.g. Cathles 1975). Assuming that the lower crustal and uppermost mantle viscosity beneath the volcanic zones of Iceland is lower than beneath older, Ter- tiary areas, the NVZ crust should rebound faster than the EFB during deglaciations. As variable response rates may generate differential stress field across the NVZ-EFB boundary during deglaciations, the Kerl- ingar fault may thus be a remnant of faster rebound of the NVZ crust than the thicker, more viscous EFB crust. Viscous crustal relaxation occurs more slowly and remains over a longer time period than the elastic rebound of the crust. As an example, a region with lower crustal viscosity of 1.5×1019 Pa s, has a relax- ation time of 1000 years (Sigmundsson 2006), while the relaxation time is only 500 years if the viscosity is lowered to 0.75×1019 Pa s. Therefore, a slight differ- ence in the viscosity can cause significantly different relaxation times. c) Density difference – buoyancy effects As the uppermost mantle below the NVZ has a lower density (3170 kg/m3) than beneath the EFB (3240 kg/m3) (Staples et al. 1997), the isostatic uplift of the NVZ during deglaciations should be higher than the uplift of the EFB. Using these mantle densities, an ice density of 920 kg/m3, a 1500 m thick glacier and a simple isostatic uplift equation; u= hice × ρice/ρmantle the uplift of the NVZ is close to 435 m and the uplift of the EFB 426 m, which implies a 9 m excess uplift of the NVZ with respect to the EFB. In addition, flexure at the rift zone margin can cause a different stress field there than in the cen- ter (i.e. Clifton and Kattenhorn 2006). However, marginal flexure should generate faults with a throw down to the west in this area. Therefore, that process cannot explain the existence of the Kerlingar fault, which has a throw down to the east. A differential stress field, produced at the bound- ary between the NVZ and the EFB during deglacia- tions (or glaciations), could explain why the Kerling- ar fault is located at the boundary of the NVZ and the EFB, and why it is parallel to the boundary and not parallel to the fissure swarms in the central NVZ. The differential stress field could form faults in two dif- ferent ways: either directly, without the involvement of magma, or indirectly, by producing a stress field which governs the orientation of dike propagations in the area during deglaciations. Therefore, dike intru- sions could play a part in the scenario, even though JÖKULL No. 60 113
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160
Qupperneq 161
Qupperneq 162
Qupperneq 163
Qupperneq 164
Qupperneq 165
Qupperneq 166
Qupperneq 167
Qupperneq 168
Qupperneq 169
Qupperneq 170
Qupperneq 171
Qupperneq 172
Qupperneq 173
Qupperneq 174
Qupperneq 175
Qupperneq 176
Qupperneq 177
Qupperneq 178
Qupperneq 179
Qupperneq 180
Qupperneq 181
Qupperneq 182
Qupperneq 183
Qupperneq 184
Qupperneq 185
Qupperneq 186
Qupperneq 187
Qupperneq 188
Qupperneq 189
Qupperneq 190
Qupperneq 191
Qupperneq 192
Qupperneq 193
Qupperneq 194
Qupperneq 195
Qupperneq 196
Qupperneq 197
Qupperneq 198
Qupperneq 199
Qupperneq 200
Qupperneq 201
Qupperneq 202
Qupperneq 203
Qupperneq 204
Qupperneq 205
Qupperneq 206
Qupperneq 207
Qupperneq 208
Qupperneq 209
Qupperneq 210
Qupperneq 211
Qupperneq 212
Qupperneq 213
Qupperneq 214
Qupperneq 215
Qupperneq 216
Qupperneq 217
Qupperneq 218
Qupperneq 219
Qupperneq 220
Qupperneq 221
Qupperneq 222
Qupperneq 223
Qupperneq 224

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.