Jökull


Jökull - 01.01.2010, Page 114

Jökull - 01.01.2010, Page 114
Hjartardóttir et al. the stress field would be governed by the differential movements caused by the deglaciation. The Kerling- ar fault displays characteristics which may indicate that the fault was formed without the involvement of magma; it is long (∼30 km) and continuous, as op- posed to the sinuous and discontinuous normal faults characteristic of dike-induced rifts. This indicates that the stress field causing the formation of the Kerlingar fault extended over a large area. We consider it likely that numerous other faults at the boundary between the NVZ and the EFB formed in a similar manner, and that magma intruded some of them, either verti- cally from the mantle, or horizontally from the Kverk- fjöll central volcano. This process could have formed the distinct arcuate pattern of hyaloclastite ridges seen at the boundary between the NVZ and the EFB, in the continuation of the Kverkfjöll fissure swarm (Fig- ure 1). Differential movements, as suggested here, would have been confined to this area and not applicable to other flank zones of the Icelandic rift. In par- ticular, this does not apply to the southernmost part of the NVZ-EFB boundary, as no marked difference in crustal thickness exists there (e.g. Allen et al. 2002; Brandsdóttir and Menke 2008; Darbyshire et al. 1998). Variations in crustal thickness along the margin of the NVZ could also explain why the dis- tinct arcuate pattern of hyaloclastite ridges seen at the NVZ-EFB boundary does not extend all the way to the Kverkfjöll central volcano (Figure 1). It has been proposed that stress changes during deglaciations have caused the formation of faults in continental settings, such as in Fennoscandia (e.g. Muir Wood 1989). These are thrust faults, consistent with horizontal compression in the old, continental crust (Sykes and Sbar 1974; Wu et al. 1999). How- ever, the reaction of the NVZ-EFB crust to deloading should be different. Crustal extension is expected in the much younger crust (Árnadóttir et al. 2009; Sykes and Sbar 1974). In this paper, we have presented an overview on the processes that may cause differential movements at the NVZ-EFB boundary. For a more detailed study, modeling of these deloading effects (i.e. with Finite Element Modelling) is preferable. CONCLUSIONS 1. The Kerlingar fault is a 30 km long normal fault located on the eastern boundary of the Northern Vol- canic Rift Zone, Iceland. It is a gently curved NNW- oriented feature. The fault is located within and par- allel with hyaloclastite ridges which form an arcuate pattern along the boundary of the NVZ and the EFB. 2. The fault has some notable features: a. It is un- usually long and continuous, compared with fractures and normal faults within the NVZ. b. It has a throw down to the east, although it is located at the eastern boundary of the NVZ. c. It is not parallel with the fis- sure swarms in the NVZ at this latitude, although it is parallel with hyaloclastite ridges at the NVZ-EFB boundary, as well as with several other faults at the same boundary. 3. Although no earthquakes have been instrumen- tally detected in the area, the sharpness and continu- ity of the fault indicate that it has been active in the Holocene. The fault has most likely been active in many earthquakes but assuming it ruptured in only one event, its magnitude would have been close to Mw=6.7. 4. The offset of fault segments we observed in the field was in the range 2–9 m. The higher number might be an overestimate because of erosion due to snow melting. 5. We found a sharp offset in a moraine formation in a part of the Kerlingar fault, which shows that the fault has been active since the Pleistocene glacier dis- appeared from the area. 6. Considering three possible explanations for the formation of the Kerlingar fault, we conclude that the most likely process is differential movements due to deglaciation, isostatic rebound and variations in crustal buoancy. Lower viscosity of the lower crust and uppermost mantle induces faster rebound within the NVZ and buoyancy generates higher uplift of the NVZ than the adjacent EFB, explaining why the Kerl- ingar fault is situated at the NVZ-EFB boundary, why it is parallel with the boundary, and why it is so long and continuous. Other faults on the NVZ-EFB bound- ary may be formed in a similar manner. Magma may have intruded some of them, forming the arcuate pat- tern of hyaloclastite ridges at the NVZ-EFB boundary. 114 JÖKULL No. 60
Page 1
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7
Page 8
Page 9
Page 10
Page 11
Page 12
Page 13
Page 14
Page 15
Page 16
Page 17
Page 18
Page 19
Page 20
Page 21
Page 22
Page 23
Page 24
Page 25
Page 26
Page 27
Page 28
Page 29
Page 30
Page 31
Page 32
Page 33
Page 34
Page 35
Page 36
Page 37
Page 38
Page 39
Page 40
Page 41
Page 42
Page 43
Page 44
Page 45
Page 46
Page 47
Page 48
Page 49
Page 50
Page 51
Page 52
Page 53
Page 54
Page 55
Page 56
Page 57
Page 58
Page 59
Page 60
Page 61
Page 62
Page 63
Page 64
Page 65
Page 66
Page 67
Page 68
Page 69
Page 70
Page 71
Page 72
Page 73
Page 74
Page 75
Page 76
Page 77
Page 78
Page 79
Page 80
Page 81
Page 82
Page 83
Page 84
Page 85
Page 86
Page 87
Page 88
Page 89
Page 90
Page 91
Page 92
Page 93
Page 94
Page 95
Page 96
Page 97
Page 98
Page 99
Page 100
Page 101
Page 102
Page 103
Page 104
Page 105
Page 106
Page 107
Page 108
Page 109
Page 110
Page 111
Page 112
Page 113
Page 114
Page 115
Page 116
Page 117
Page 118
Page 119
Page 120
Page 121
Page 122
Page 123
Page 124
Page 125
Page 126
Page 127
Page 128
Page 129
Page 130
Page 131
Page 132
Page 133
Page 134
Page 135
Page 136
Page 137
Page 138
Page 139
Page 140
Page 141
Page 142
Page 143
Page 144
Page 145
Page 146
Page 147
Page 148
Page 149
Page 150
Page 151
Page 152
Page 153
Page 154
Page 155
Page 156
Page 157
Page 158
Page 159
Page 160
Page 161
Page 162
Page 163
Page 164
Page 165
Page 166
Page 167
Page 168
Page 169
Page 170
Page 171
Page 172
Page 173
Page 174
Page 175
Page 176
Page 177
Page 178
Page 179
Page 180
Page 181
Page 182
Page 183
Page 184
Page 185
Page 186
Page 187
Page 188
Page 189
Page 190
Page 191
Page 192
Page 193
Page 194
Page 195
Page 196
Page 197
Page 198
Page 199
Page 200
Page 201
Page 202
Page 203
Page 204
Page 205
Page 206
Page 207
Page 208
Page 209
Page 210
Page 211
Page 212
Page 213
Page 214
Page 215
Page 216
Page 217
Page 218
Page 219
Page 220
Page 221
Page 222
Page 223
Page 224

x

Jökull

Direct Links

If you want to link to this newspaper/magazine, please use these links:

Link to this newspaper/magazine: Jökull
https://timarit.is/publication/1155

Link to this issue:

Link to this page:

Link to this article:

Please do not link directly to images or PDFs on Timarit.is as such URLs may change without warning. Please use the URLs provided above for linking to the website.