Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.01.2010, Qupperneq 166

Jökull - 01.01.2010, Qupperneq 166
A. Stefánsson terms of burial depth of the lavas and increased tem- perature with depth (e.g. Walker, 1960; Sukheswala et al., 1974; Kristmannsdóttir and Tómasson, 1978; Mehegan et al., 1982; Jørgensen, 1984; Murata et al., 1987; Neuhoff et al., 1999, 2006; Weisenberger and Selbekk, 2009). As many as five depth-controlled zeolite zones have been described. These tempera- ture dependences in turn have been extensively used as thermobarometers for evaluation of crustal temper- atures and burial depth of basaltic crust. Moreover, systematic changes in phyllosilicate composition and sequence of the appearance of the alteration miner- als have been observed, often with celadonite and SiO2 minerals (chalcedony) followed by mixed clays and chlorites and eventually zeolites in the pore space (Neuhoff et al., 1999; Weisenberger and Selbekk, 2009). Similar changes have been reported with rock age and geochemical modelling during weathering of basaltic glass with simple Fe and Al oxyhydrox- ides and allophane forming initially, which is then re- placed by Ca-Mg rich smectites with time (Crovisier et al., 1992; Stefánsson and Gíslason, 2001). The ef- fect of rock and fluid composition has also been in- vestigated (e.g. Kristmannsdóttir, 1984, 1985). The alteration of basalts at low-temperature in- volves the dissolution of primary minerals and pri- mary glasses and the formation of secondary minerals and dissolved solutes in water. In a closed system of fixed composition, the overall reaction is incongruent and is affected by temperature, rock and fluid compo- sition and extent of reaction. Moreover, for systems containing more than one phase, the extent of reac- tion will further result in changes in mass between the various phases. The result is that the process of alteration of a chemical system of fixed composition (rock and fluid) must be influenced by several factors including temperature, reaction progress and reaction mechanism. However, the contribution of the various factors to basalt alteration is somewhat unclear. To answer these questions one needs to separately study the effects of temperature, initial fluid composi- tion including acidity, and the extent of reaction. The mass fluxes in the system are controlled by mineral solubilities and their respective dissolution and pre- cipitation kinetics. Fluid-rock reaction simulations provide a unique tool to approach this problem. How- ever, such calculations have to be treated with care and compared with experimental and field observa- tions. In the present study, water-basalt interaction modelling for closed systems was carried out under weathering and low-temperature geothermal condi- tions and the results used to gain insight into the role of temperature, water composition, and time on low- temperature geothermal alteration of basalts. METHODS A conceptual model of low-temperature geother- mal alteration Let’s assume a closed system of fixed composition and mass, like basalt and water. The system contains two phases, liquid and solid. Initially, the water is undersaturated with respect to all minerals and will dissolve the basalt. This continues until the water be- comes supersaturated with respect to a given second- ary mineral or mineral assemblage. The secondary minerals formed generally have a different relative composition than the primary minerals, resulting in changes in mass ratio of elements (components) be- tween the two phases along the reaction path. This phenomenon may be called water-rock diffraction as an analogue of magma diffraction. This result is that the composition of the two phases, the solid and liq- uid, changes with time and is a function of the extent of the reaction, yet the total system mass is conserved. The extensive variables acting on the system are then temperature and pressure (Helgeson, 1968; Denbigh, 1971). Under weathering and low-temperature condi- tions pressure plays a small role and may be ignored. In an open flow-through system equivalent to a per- meable fracture, the conservation of mass also may not hold. The overall status of the system must there- fore reflect steady state conditions of fluid supply (wa- ter and acids and their ionization equilibria) and the extent of water-rock reaction at a particular tempera- ture. This results in a conceptual model of geothermal alteration with several important factors affecting the water-rock process including temperature, water and acid supply, and extent of reaction. 166 JÖKULL No. 60
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160
Qupperneq 161
Qupperneq 162
Qupperneq 163
Qupperneq 164
Qupperneq 165
Qupperneq 166
Qupperneq 167
Qupperneq 168
Qupperneq 169
Qupperneq 170
Qupperneq 171
Qupperneq 172
Qupperneq 173
Qupperneq 174
Qupperneq 175
Qupperneq 176
Qupperneq 177
Qupperneq 178
Qupperneq 179
Qupperneq 180
Qupperneq 181
Qupperneq 182
Qupperneq 183
Qupperneq 184
Qupperneq 185
Qupperneq 186
Qupperneq 187
Qupperneq 188
Qupperneq 189
Qupperneq 190
Qupperneq 191
Qupperneq 192
Qupperneq 193
Qupperneq 194
Qupperneq 195
Qupperneq 196
Qupperneq 197
Qupperneq 198
Qupperneq 199
Qupperneq 200
Qupperneq 201
Qupperneq 202
Qupperneq 203
Qupperneq 204
Qupperneq 205
Qupperneq 206
Qupperneq 207
Qupperneq 208
Qupperneq 209
Qupperneq 210
Qupperneq 211
Qupperneq 212
Qupperneq 213
Qupperneq 214
Qupperneq 215
Qupperneq 216
Qupperneq 217
Qupperneq 218
Qupperneq 219
Qupperneq 220
Qupperneq 221
Qupperneq 222
Qupperneq 223
Qupperneq 224

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.