Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.01.2010, Qupperneq 176

Jökull - 01.01.2010, Qupperneq 176
A. Stefánsson of reaction. Under these conditions, the mass of smec- tites formed was insignificant and zeolites were found to be unstable. This resulted in apparent high mobil- ity of Mg2+, Ca2+ and Fe2+. The carbonates formed under these conditions were predominantly siderite, magnesite and Fe-Mg carbonate solid solutions. With increasing pH, Ca-Mg-Fe containing smectites and Ca-Na containing zeolites become increasingly im- portant, reducing the mobility of Mg and Fe. This lack of Mg and Fe in solution resulted in calcite be- ing the stable carbonate at pH >8. This pattern is in good agreement with natural carbonate mineralogy under elevated and depleted CO2 conditions (Neuhoff et al., 2006; Rogers et al., 2006; Gysi and Stefánsson, 2010). The well known zeolite zonation with depth has been interpreted in terms of formation temperatures caused by variable burial depth. The reaction path calculations of basaltic glass alteration failed to some degree in simulating the very detailed compositional variations of zeolites observed in nature. Usually, a given zeolite pair was formed independent of the ex- tent of reaction and temperature. However, some pre- liminary calculations indicated that varying the basalt composition, different zeolite pairs may be formed. In addition, small changes in the clay solid solution com- position were found to change the zeolite assemblage formed. The results are not presented in detail here as they are more speculative and much more work is needed; however, they suggest that primary rock com- position, incongruent dissolution of primary minerals of basalts and composition of phyllosilicates, as well as temperature, may play important roles in determin- ing the composition of zeolites. The above factors in turn are again dependent on acid supply and extent of reaction. The conclusions that may be drawn from the above geochemical model calculations are that the ob- served low-temperature secondary mineralogy is de- termined predominantly by the pH of the water inter- acting with the basalt and extent of reaction. Tem- perature is probably less important than the other two factors. The pH of the water, on the other hand, is de- termined by the nature and concentration of acid into the system, the respective ionization constants and the extent of reaction that is reflected by increased reac- tion time. At a pH above 8, the well known mineral sequence of celadonite, simple oxides (chalcedony) and oxyhydroxides forming first, followed by Ca-Mg- Fe smectites, chlorites and eventually zeolites is ob- served at all temperatures between 50 and 150◦C. The mass of carbonates formed depend on the CO2 con- centration of the system. The overall reaction pattern of basalt alteration and the associated elemental mobilities are summa- rized in Figure 7. The reactions and secondary min- eral assemblages formed depended primarily on the water pH. The pH in turn was controlled by the nature of the acid (strong H2SO4 or weak CO2) and extent of reaction. Three categories may be defined: (1) Low pH H2SO4 alteration (pH <4) dominated by amorphous silica, kaolinite, Al and Fe oxyhydrox- ides and sulphur-containing minerals (2) Mildly acid CO2 alteration (pH 5–7) domi- nated by kaolinite, chalcedony, Ca-Mg-Fe smectites and Mg-Fe carbonates (3) Alkaline water alteration (pH >8) dominated, in order of appearance with extent of reaction, by chalcedony and celadonite, Ca-Mg-Fe smectites, ze- olites and calcite. Reaction path modelling and natural low- temperature geothermal waters The effect of temperature, pH and extent of reaction on basalt alteration may be analysed by comparison with the results of the geochemical model calcula- tions with natural low-temperature water. The water- rock reaction can be viewed as an acid-base titration whereas the dissolution of basalt results in consump- tion of the acid (H+) and release of the cations. This results in changes in the cation to proton ratio with in- creased extent of reaction as well as an increase in the pH value of the water. In the calculations, chemical equilibrium was assumed between the water and the secondary minerals formed to control the composition of the solution. It follows that the slope of the cation to proton ratio as a function of pH is controlled by the mineral saturation and the overall reaction stoichiom- etry of the basalt alteration reaction under particular conditions. 176 JÖKULL No. 60
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160
Qupperneq 161
Qupperneq 162
Qupperneq 163
Qupperneq 164
Qupperneq 165
Qupperneq 166
Qupperneq 167
Qupperneq 168
Qupperneq 169
Qupperneq 170
Qupperneq 171
Qupperneq 172
Qupperneq 173
Qupperneq 174
Qupperneq 175
Qupperneq 176
Qupperneq 177
Qupperneq 178
Qupperneq 179
Qupperneq 180
Qupperneq 181
Qupperneq 182
Qupperneq 183
Qupperneq 184
Qupperneq 185
Qupperneq 186
Qupperneq 187
Qupperneq 188
Qupperneq 189
Qupperneq 190
Qupperneq 191
Qupperneq 192
Qupperneq 193
Qupperneq 194
Qupperneq 195
Qupperneq 196
Qupperneq 197
Qupperneq 198
Qupperneq 199
Qupperneq 200
Qupperneq 201
Qupperneq 202
Qupperneq 203
Qupperneq 204
Qupperneq 205
Qupperneq 206
Qupperneq 207
Qupperneq 208
Qupperneq 209
Qupperneq 210
Qupperneq 211
Qupperneq 212
Qupperneq 213
Qupperneq 214
Qupperneq 215
Qupperneq 216
Qupperneq 217
Qupperneq 218
Qupperneq 219
Qupperneq 220
Qupperneq 221
Qupperneq 222
Qupperneq 223
Qupperneq 224

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.