Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.01.2010, Qupperneq 181

Jökull - 01.01.2010, Qupperneq 181
Low-temperature alteration of basalts However, though not commonly discussed, problems with many other geothermometers, particularly those based on the Na/K and Na/K/Ca ratios, do not often compare with the silica geothermometry temperatures at low temperatures (<150◦C); indeed the concentra- tions of these elements seem to be controlled by sev- eral factors including temperature, water pH and ex- tent of reaction. There are still many unanswered questions on the detailed reaction mechanism of basalt alteration un- der low-temperature geothermal conditions. The ap- proach in the present study is a very simplified view of the actual system, assuming it to be closed and that the basalt dissolves stoichiometrically. The ef- fects of continuous fluid flux, similar to what occurs in fractured rocks, need to be investigated, including what alteration mineral formations coexist in time and space for such systems. Moreover, systematic effects of rock composition and primary mineral composition and abundance are needed. The dissolution rate of the basalt is the predominant factor in determining the overall mass fluxes in the system. Recent work has demonstrated that the dissolution rate of crystalline basalt is different to that of basaltic glass as well as being non-stoichiometric with respect to bulk compo- sition (Gudbrandsson et al., 2010) and depends on the pH of the waters. SUMMARY AND CONCLUSIONS The low-temperature alteration of basaltic glass un- der weathering and low-temperature geothermal con- ditions was studied using reaction path modelling. In particular, the effect of initial fluid acidity, extent of reaction and temperature was investigated. The weathering of basalts in the presence of at- mospheric and lower CO2 pressures was found to go through three stages. Stage I is characterized as insignificant basalt dissolution and the formation of simple insoluble hydroxides, mainly ferrihydrite, thus decreasing the mobility of Fe and Al. Stage II was reached upon progressive basaltic glass dissolution and resulted in the formation of simple Al-Si phases like imogolite, allophane and/or kaolinite and Ca-Mg- Fe smectites, decreasing the mobility of Al, Fe, Si, Ca and Mg. Upon extensive weathering and increase in the pH of water, stage III may be reached with the for- mation of smectites, zeolites, calcite and SiO2 (opal or chalcedony). These results are in very good agree- ment with observations of the weathering mineralogy of basalts in Iceland (Arnalds, 1990; Crovisier et al., 1992; Wada et al., 1992; Arnalds et al., 1995; Sigfús- son et al., 2008). The primary factors in determining the weathering of basaltic glass was the water pH. The pH in turn was found to be controlled by the supply of CO2 and the extent of basaltic glass dissolution or reaction time and reflected steady state conditions be- tween the extent of reaction, CO2 input and the mass and composition of weathering minerals formed. Under low-temperature geothermal conditions (50–150◦C) the pH of the water and the extent of re- action were to be the predominant factor determining the alteration mineralogy. Under strongly acid con- ditions (pH <4), for example in acid sulphate wa- ters, amorphous silica, kaolinite, Al-Fe oxyhydrox- ides and sulphur-containing minerals were most im- portant. Sodium, K, Ca and Mg were observed to be mobile whereas Si, Al and Fe were less mobile or immobile. Under mildly acid conditions (pH 5–7), for example in CO2 rich waters, the alteration min- eralogy was dominated by kaolinite, chalcedony, Ca- Mg-Fe smectites and Mg-Fe carbonates. Iron, Al and Si were found to be immobile whereas Mg and Ca mobility depended on the mass of carbonate formed and the pH of the water. Under alkaline conditions (pH >8) resulting from a low acid supply and/or ex- tensive basaltic glass dissolution, the following sec- ondary minerals formed in order of appearance: chal- cedony, celadonite, Ca-Mg-Fe smectites, zeolites and calcite, thus greatly reducing the mobility of most dis- solved elements. Based on comparison between the geochemical models, naturally observed low-temperature alter- ation mineralogy and water chemistry, the predomi- nant factor controlling the alteration process was the pH of the water. The various secondary mineral as- semblages formed were strongly dependent on pH, which in turn determined the various elemental mo- bilities. The pH value reflected steady state condi- tions between the supply and type of acid and quan- tity of basaltic glass dissolved (extent of reaction) or JÖKULL No. 60 181
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160
Qupperneq 161
Qupperneq 162
Qupperneq 163
Qupperneq 164
Qupperneq 165
Qupperneq 166
Qupperneq 167
Qupperneq 168
Qupperneq 169
Qupperneq 170
Qupperneq 171
Qupperneq 172
Qupperneq 173
Qupperneq 174
Qupperneq 175
Qupperneq 176
Qupperneq 177
Qupperneq 178
Qupperneq 179
Qupperneq 180
Qupperneq 181
Qupperneq 182
Qupperneq 183
Qupperneq 184
Qupperneq 185
Qupperneq 186
Qupperneq 187
Qupperneq 188
Qupperneq 189
Qupperneq 190
Qupperneq 191
Qupperneq 192
Qupperneq 193
Qupperneq 194
Qupperneq 195
Qupperneq 196
Qupperneq 197
Qupperneq 198
Qupperneq 199
Qupperneq 200
Qupperneq 201
Qupperneq 202
Qupperneq 203
Qupperneq 204
Qupperneq 205
Qupperneq 206
Qupperneq 207
Qupperneq 208
Qupperneq 209
Qupperneq 210
Qupperneq 211
Qupperneq 212
Qupperneq 213
Qupperneq 214
Qupperneq 215
Qupperneq 216
Qupperneq 217
Qupperneq 218
Qupperneq 219
Qupperneq 220
Qupperneq 221
Qupperneq 222
Qupperneq 223
Qupperneq 224

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.