Læknablaðið - 01.10.2015, Page 27
LÆKNAblaðið 2015/101 467
Y F I R L I T S G R E I N
Heimildir
1. De Felici M. Origin, Migration, and Proliferation of
Human Primordial Germ Cells. In: Oogenesis. Springer
London, London 2013: 19-37.
2. Hayashi Y, Saitou M, Yamanaka S. Germline development
from human pluripotent stem cells toward disease model-
ing of infertility. Fertil Steril 2012; 97: 1250-9.
3. Irie N, Weinberger L, Tang WW, Kobayashi T, Viukov
S, Manor YS, et al. SOX17 is a critical specifier of human
primordial germ cell fate. Cell 2015; 160: 253-68.
4. Sasaki K, Yokobayashi S, Nakamura T, Okamoto I, Yabuta
Y, Kurimoto K, et al. Robust In Vitro Induction of Human
Germ Cell Fate from Pluripotent Stem Cells. Cell Stem Cell
2015; 17: 178-94.
5. Sugawa F, Araúzo-Bravo MJ, Yoon J, Kim KP, Aramaki S,
Wu G, et al. Human primordial germ cell commitment in
vitro associates with a unique PRDM 14 expression profile.
EMBO J 2015; 34: 1009-24.
6. Takahashi K, Yamanaka S. Induction of pluripotent stem
cells from mouse embryonic and adult fibroblast cultures
by defined factors. Cell 2006; 126: 663-76.
7. Gurdon JB. Adult frogs derived from the nuclei of single
somatic cells. Dev Biol 1962; 4: 256-73.
8. Shi Y, Kirwan P, Smith J, MacLean G, Orkin SH, Livesey FJ.
A Human Stem Cell Model of Early Alzheimer’s Disease
Pathology in Down Syndrome. Sci Transl Med 2012; 4:
124ra29-124ra29.
9. Park IH, Arora N, Huo H, Maherali N, Ahfeldt T,
Shimamura A, et al. Disease-specific induced pluripotent
stem cells. Cell 2008; 134: 877-86.
10. Magnúsdóttir E, Surani MA. How to make a primordial
germ cell. Development 2014; 141: 245-52.
11. Chiquoine AD. The identification, origin, and migration of
the primordial germ cells in the mouse embryo. Anat Rec
1954; 118: 135-46.
12. Extavour CG, Akam M. Mechanisms of germ cell specifica-
tion across the metazoans: epigenesis and preformation.
Development 2003; 130: 5869-84.
13. Guo F, Yan L, Guo H, Li L, Hu B, Zhao Y, et al. The
Transcriptome and DNA Methylome Landscapes of
Human Primordial Germ Cells. Cell 2015; 161: 1437-52.
14. Gkountela S, Zhang KX, Shafiq TA, Liao WW, Hargan-
Calvopiña J, Chen PY, et al. DNA Demethylation
Dynamics in the Human Prenatal Germline. Cell 2015; 161:
1425-36.
15. Tang WW, Dietmann S, Irie N, Leitch HG, Floros VI,
Bradshaw CR, et al. A Unique Gene Regulatory Network
Resets the Human Germline Epigenome for Development.
Cell 2015; 161: 1453-67.
16. Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou
M. Reconstitution of the mouse germ cell specification
pathway in culture by pluripotent stem cells. Cell 2011;
146: 519-32.
17. Ohinata Y, Ohta H, Shigeta M, Yamanaka K, Wakayama T,
Saitou M. A signaling principle for the specification of the
germ cell lineage in mice. Cell 2009; 137: 571-84.
18. Okamura D, Hayashi K, Matsui Y. Mouse epiblasts
change responsiveness to BMP4 signal required for PGC
formation through functions of extraembryonic ectoderm.
Mol Reprod Dev 2005; 70: 20-9.
19. Lawson KA, Dunn NR, Roelen BA, Zeinstra LM, Davis
AM, Wright CV, et al. Bmp4 is required for the generation
of primordial germ cells in the mouse embryo. Genes Dev
1999; 13: 424-36.
20. Tam PP, Zhou SX. The allocation of epiblast cells to
ectodermal and germ-line lineages is influenced by the
position of the cells in the gastrulating mouse embryo. Dev
Biol 1996; 178: 124-32.
21. Lawson KA, Hage WJ. Clonal analysis of the origin of pri-
mordial germ cells in the mouse. Ciba Found Symp1994;
182: 68-91.
22. Hayashi K, Kobayashi T, Umino T, Goitsuka R, Matsui
Y, Kitamura D. SMAD1 signaling is critical for initial
commitment of germ cell lineage from mouse epiblast.
Mech Dev 2002; 118: 99-109.
23. Ying Y, Zhao GQ. Cooperation of endoderm-derived
BMP2 and extraembryonic ectoderm-derived BMP4 in
primordial germ cell generation in the mouse. Dev Biol
2001; 232: 484-92.
24. Ying Y, Liu XM, Marble a, Lawson K a, Zhao GQ.
Requirement of Bmp8b for the generation of primordial
germ cells in the mouse. Mol Endocrinol 2000; 14: 1053-63.
25. Hayashi K, Ogushi S, Kurimoto K, Shimamoto S, Ohta H,
Saitou M. Offspring from oocytes derived from in vitro
primordial germ cell-like cells in mice. Science 2012; 338:
971-5.
26. Irie N, Tang WWC, Azim Surani M. Germ cell specification
and pluripotency in mammals: a perspective from early
embryogenesis. Reprod Med Biol 2014; 13: 203-15.
27. Fuhrmann G, Chung AC, Jackson KJ, Hummelke G,
Baniahmad A, Sutter J, et al. Mouse germline restriction of
Oct4 expression by germ cell nuclear factor. Dev Cell 2001;
1: 377-87.
28. Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield
JW, Donovan PJ, et al. Derivation of pluripotent stem cells
from cultured human primordial germ cells. Proc Natl
Acad Sci U S A 1998; 95: 13726-31.
29. Turnpenny L. Derivation of Human Embryonic Germ
Cells: An Alternative Source of Pluripotent Stem Cells.
Stem Cells 2003; 21: 598-609.
30. Saitou M, Barton SC, Surani MA. A molecular programme
for the specification of germ cell fate in mice. Nature 2002;
418: 293-300.
31. Robertson EJ, Charatsi I, Joyner CJ, Koonce CH, Morgan
M, Islam A, et al. Blimp1 regulates development of the
posterior forelimb, caudal pharyngeal arches, heart and
sensory vibrissae in mice. Development 2007; 134: 4335-45.
32. Ohinata Y, Payer B, O’Carroll D, Ancelin K, Ono Y, Sano
M, et al. Blimp1 is a critical determinant of the germ cell
lineage in mice. Nature 2005; 436: 207-13.
33. Kurimoto K, Yabuta Y, Ohinata Y, Shigeta M, Yamanaka K,
Saitou M. Complex genome-wide transcription dynamics
orchestrated by Blimp1 for the specification of the germ
cell lineage in mice. Genes Dev 2008; 22: 1617-35.
34. Magnúsdóttir E, Dietmann S, Murakami K, Günesdogan
U, Tang F, Bao S, et al. A tripartite transcription factor
network regulates primordial germ cell specification in
mice. Nat Cell Biol 2013; 15: 905-15.
35. Nakaki F, Hayashi K, Ohta H, Kurimoto K, Yabuta Y,
Saitou M. Induction of mouse germ-cell fate by transc-
ription factors in vitro. Nature 2013; 501: 222-6.
36. Yamaji M, Ueda J, Hayashi K, Ohta H, Yabuta Y, Kurimoto
K, et al. PRDM14 ensures naive pluripotency through dual
regulation of signaling and epigenetic pathways in mouse
embryonic stem cells. Cell Stem Cell 2013; 12: 368-82.
37. Weber S, Eckert D, Nettersheim D, Gillis AJ, Schäfer S,
Kuckenberg P, et al. Critical function of AP-2 gamma/
TCFAP2C in mouse embryonic germ cell maintenance.
Biol Reprod 2010; 82: 214-23.
38. Yan L, Yang M, Guo H, Yang L, Wu J, Li R, et al. Single-cell
RNA-Seq profiling of human preimplantation embryos
and embryonic stem cells. Nat Struct Mol Biol 2013; 20:
1131-9.
39. Hackett JA, Surani MA. Regulatory Principles of
Pluripotency: From the Ground State Up. Cell Stem Cell
2014; 15: 416-30.
40. Nichols J, Smith A. Naive and Primed Pluripotent States.
Cell Stem Cell 2009; 4: 487-92.
41. Gafni O, Weinberger L, Mansour AA, Manor YS, Chomsky
E, Ben-Yosef D, et al. Derivation of novel human ground
state naive pluripotent stem cells. Nature 2013; 504: 282-6.
42. Buecker C, Chen HH, Polo JM, Daheron L, Bu L, Barakat
TS, et al. A murine ESC-like state facilitates transgenesis
and homologous recombination in human pluripotent
stem cells. Cell Stem Cell 2010; 6: 535-46.
43. Hanna J, Cheng AW, Saha K, Kim J, Lengner CJ, Soldner
F, et al. Human embryonic stem cells with biological and
epigenetic characteristics similar to those of mouse ESCs.
Proc Natl Acad Sci U S A 2010; 107: 9222-7.
44. MacLaughlin DT, Donahoe PK. Sex Determination and
Differentiation. N Engl J Med 2004; 350: 367-78.
45. Stevens LC. Origin of testicular teratomas from primordial
germ cells in mice. J Natl Cancer Inst 1967; 38: 549-52.
46. Swales a. KE, Spears N. Genomic imprinting and repro-
duction. Reproduction 2005; 130: 389-99.
47. Hajkova P, Ancelin K, Waldmann T, Lacoste N, Lange UC,
Cesari F, et al. Chromatin dynamics during epigenetic
reprogramming in the mouse germ line. Nature 2008; 452:
877-81.
48. Sharpe RM, Mitchell RT. The downside of “inappropriate
messaging”: New insight into the development of testi-
cular germ cell tumours in young men? J Pathol 2013; 229:
497-501.
Samantekt
Frumkímfrumur eru forverar kynfruma og mynda hinn ævarandi
hlekk á milli kynslóða lífvera.
Torvelt hefur verið að rannsaka þroskun frumkímfruma
manna vegna þess hversu óaðgengilegar þær eru á fósturþroska.
Nú hefur tekist að sérhæfa frumkímfrumur manna með því að
nota fjölhæfar fósturvísastofnfrumur og iPS-frumur sem upp-
hafsfrumur í rækt. Því eru miklar vonir bundnar við að á næstu
árum verði mögulegt að herma eftir öllum stigum kynfrumu-
þroska manna í vefjarækt, og þar með skapa grundvöll rannsókna
á ófrjósemi og sjúkdómum tengdum þroskun kímfruma. Þannig
eru líka bundnar vonir við að ræktun frumkímfruma geti valdið
frekari framförum við þróun hjálparaðferða við frjóvgun og að
unnt verði að nota ræktarkerfið til þess að varðveita frjósemi fólks
eftir krabbameinsmeðferð.
Þakkir
Ég vil þakka Guðrúnu Valdimarsdóttur, Eiríki Steingrímssyni og
Pétri Henry Petersen fyrir yfirlestur handrits og góðar athuga-
semdir og umræður.