Læknablaðið

Ukioqatigiit

Læknablaðið - 01.10.2015, Qupperneq 27

Læknablaðið - 01.10.2015, Qupperneq 27
LÆKNAblaðið 2015/101 467 Y F I R L I T S G R E I N Heimildir 1. De Felici M. Origin, Migration, and Proliferation of Human Primordial Germ Cells. In: Oogenesis. Springer London, London 2013: 19-37. 2. Hayashi Y, Saitou M, Yamanaka S. Germline development from human pluripotent stem cells toward disease model- ing of infertility. Fertil Steril 2012; 97: 1250-9. 3. Irie N, Weinberger L, Tang WW, Kobayashi T, Viukov S, Manor YS, et al. SOX17 is a critical specifier of human primordial germ cell fate. Cell 2015; 160: 253-68. 4. Sasaki K, Yokobayashi S, Nakamura T, Okamoto I, Yabuta Y, Kurimoto K, et al. Robust In Vitro Induction of Human Germ Cell Fate from Pluripotent Stem Cells. Cell Stem Cell 2015; 17: 178-94. 5. Sugawa F, Araúzo-Bravo MJ, Yoon J, Kim KP, Aramaki S, Wu G, et al. Human primordial germ cell commitment in vitro associates with a unique PRDM 14 expression profile. EMBO J 2015; 34: 1009-24. 6. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663-76. 7. Gurdon JB. Adult frogs derived from the nuclei of single somatic cells. Dev Biol 1962; 4: 256-73. 8. Shi Y, Kirwan P, Smith J, MacLean G, Orkin SH, Livesey FJ. A Human Stem Cell Model of Early Alzheimer’s Disease Pathology in Down Syndrome. Sci Transl Med 2012; 4: 124ra29-124ra29. 9. Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, et al. Disease-specific induced pluripotent stem cells. Cell 2008; 134: 877-86. 10. Magnúsdóttir E, Surani MA. How to make a primordial germ cell. Development 2014; 141: 245-52. 11. Chiquoine AD. The identification, origin, and migration of the primordial germ cells in the mouse embryo. Anat Rec 1954; 118: 135-46. 12. Extavour CG, Akam M. Mechanisms of germ cell specifica- tion across the metazoans: epigenesis and preformation. Development 2003; 130: 5869-84. 13. Guo F, Yan L, Guo H, Li L, Hu B, Zhao Y, et al. The Transcriptome and DNA Methylome Landscapes of Human Primordial Germ Cells. Cell 2015; 161: 1437-52. 14. Gkountela S, Zhang KX, Shafiq TA, Liao WW, Hargan- Calvopiña J, Chen PY, et al. DNA Demethylation Dynamics in the Human Prenatal Germline. Cell 2015; 161: 1425-36. 15. Tang WW, Dietmann S, Irie N, Leitch HG, Floros VI, Bradshaw CR, et al. A Unique Gene Regulatory Network Resets the Human Germline Epigenome for Development. Cell 2015; 161: 1453-67. 16. Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 2011; 146: 519-32. 17. Ohinata Y, Ohta H, Shigeta M, Yamanaka K, Wakayama T, Saitou M. A signaling principle for the specification of the germ cell lineage in mice. Cell 2009; 137: 571-84. 18. Okamura D, Hayashi K, Matsui Y. Mouse epiblasts change responsiveness to BMP4 signal required for PGC formation through functions of extraembryonic ectoderm. Mol Reprod Dev 2005; 70: 20-9. 19. Lawson KA, Dunn NR, Roelen BA, Zeinstra LM, Davis AM, Wright CV, et al. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev 1999; 13: 424-36. 20. Tam PP, Zhou SX. The allocation of epiblast cells to ectodermal and germ-line lineages is influenced by the position of the cells in the gastrulating mouse embryo. Dev Biol 1996; 178: 124-32. 21. Lawson KA, Hage WJ. Clonal analysis of the origin of pri- mordial germ cells in the mouse. Ciba Found Symp1994; 182: 68-91. 22. Hayashi K, Kobayashi T, Umino T, Goitsuka R, Matsui Y, Kitamura D. SMAD1 signaling is critical for initial commitment of germ cell lineage from mouse epiblast. Mech Dev 2002; 118: 99-109. 23. Ying Y, Zhao GQ. Cooperation of endoderm-derived BMP2 and extraembryonic ectoderm-derived BMP4 in primordial germ cell generation in the mouse. Dev Biol 2001; 232: 484-92. 24. Ying Y, Liu XM, Marble a, Lawson K a, Zhao GQ. Requirement of Bmp8b for the generation of primordial germ cells in the mouse. Mol Endocrinol 2000; 14: 1053-63. 25. Hayashi K, Ogushi S, Kurimoto K, Shimamoto S, Ohta H, Saitou M. Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science 2012; 338: 971-5. 26. Irie N, Tang WWC, Azim Surani M. Germ cell specification and pluripotency in mammals: a perspective from early embryogenesis. Reprod Med Biol 2014; 13: 203-15. 27. Fuhrmann G, Chung AC, Jackson KJ, Hummelke G, Baniahmad A, Sutter J, et al. Mouse germline restriction of Oct4 expression by germ cell nuclear factor. Dev Cell 2001; 1: 377-87. 28. Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci U S A 1998; 95: 13726-31. 29. Turnpenny L. Derivation of Human Embryonic Germ Cells: An Alternative Source of Pluripotent Stem Cells. Stem Cells 2003; 21: 598-609. 30. Saitou M, Barton SC, Surani MA. A molecular programme for the specification of germ cell fate in mice. Nature 2002; 418: 293-300. 31. Robertson EJ, Charatsi I, Joyner CJ, Koonce CH, Morgan M, Islam A, et al. Blimp1 regulates development of the posterior forelimb, caudal pharyngeal arches, heart and sensory vibrissae in mice. Development 2007; 134: 4335-45. 32. Ohinata Y, Payer B, O’Carroll D, Ancelin K, Ono Y, Sano M, et al. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 2005; 436: 207-13. 33. Kurimoto K, Yabuta Y, Ohinata Y, Shigeta M, Yamanaka K, Saitou M. Complex genome-wide transcription dynamics orchestrated by Blimp1 for the specification of the germ cell lineage in mice. Genes Dev 2008; 22: 1617-35. 34. Magnúsdóttir E, Dietmann S, Murakami K, Günesdogan U, Tang F, Bao S, et al. A tripartite transcription factor network regulates primordial germ cell specification in mice. Nat Cell Biol 2013; 15: 905-15. 35. Nakaki F, Hayashi K, Ohta H, Kurimoto K, Yabuta Y, Saitou M. Induction of mouse germ-cell fate by transc- ription factors in vitro. Nature 2013; 501: 222-6. 36. Yamaji M, Ueda J, Hayashi K, Ohta H, Yabuta Y, Kurimoto K, et al. PRDM14 ensures naive pluripotency through dual regulation of signaling and epigenetic pathways in mouse embryonic stem cells. Cell Stem Cell 2013; 12: 368-82. 37. Weber S, Eckert D, Nettersheim D, Gillis AJ, Schäfer S, Kuckenberg P, et al. Critical function of AP-2 gamma/ TCFAP2C in mouse embryonic germ cell maintenance. Biol Reprod 2010; 82: 214-23. 38. Yan L, Yang M, Guo H, Yang L, Wu J, Li R, et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol 2013; 20: 1131-9. 39. Hackett JA, Surani MA. Regulatory Principles of Pluripotency: From the Ground State Up. Cell Stem Cell 2014; 15: 416-30. 40. Nichols J, Smith A. Naive and Primed Pluripotent States. Cell Stem Cell 2009; 4: 487-92. 41. Gafni O, Weinberger L, Mansour AA, Manor YS, Chomsky E, Ben-Yosef D, et al. Derivation of novel human ground state naive pluripotent stem cells. Nature 2013; 504: 282-6. 42. Buecker C, Chen HH, Polo JM, Daheron L, Bu L, Barakat TS, et al. A murine ESC-like state facilitates transgenesis and homologous recombination in human pluripotent stem cells. Cell Stem Cell 2010; 6: 535-46. 43. Hanna J, Cheng AW, Saha K, Kim J, Lengner CJ, Soldner F, et al. Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc Natl Acad Sci U S A 2010; 107: 9222-7. 44. MacLaughlin DT, Donahoe PK. Sex Determination and Differentiation. N Engl J Med 2004; 350: 367-78. 45. Stevens LC. Origin of testicular teratomas from primordial germ cells in mice. J Natl Cancer Inst 1967; 38: 549-52. 46. Swales a. KE, Spears N. Genomic imprinting and repro- duction. Reproduction 2005; 130: 389-99. 47. Hajkova P, Ancelin K, Waldmann T, Lacoste N, Lange UC, Cesari F, et al. Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature 2008; 452: 877-81. 48. Sharpe RM, Mitchell RT. The downside of “inappropriate messaging”: New insight into the development of testi- cular germ cell tumours in young men? J Pathol 2013; 229: 497-501. Samantekt Frumkímfrumur eru forverar kynfruma og mynda hinn ævarandi hlekk á milli kynslóða lífvera. Torvelt hefur verið að rannsaka þroskun frumkímfruma manna vegna þess hversu óaðgengilegar þær eru á fósturþroska. Nú hefur tekist að sérhæfa frumkímfrumur manna með því að nota fjölhæfar fósturvísastofnfrumur og iPS-frumur sem upp- hafsfrumur í rækt. Því eru miklar vonir bundnar við að á næstu árum verði mögulegt að herma eftir öllum stigum kynfrumu- þroska manna í vefjarækt, og þar með skapa grundvöll rannsókna á ófrjósemi og sjúkdómum tengdum þroskun kímfruma. Þannig eru líka bundnar vonir við að ræktun frumkímfruma geti valdið frekari framförum við þróun hjálparaðferða við frjóvgun og að unnt verði að nota ræktarkerfið til þess að varðveita frjósemi fólks eftir krabbameinsmeðferð. Þakkir Ég vil þakka Guðrúnu Valdimarsdóttur, Eiríki Steingrímssyni og Pétri Henry Petersen fyrir yfirlestur handrits og góðar athuga- semdir og umræður.

x

Læknablaðið

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Læknablaðið
https://timarit.is/publication/986

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.