Jökull


Jökull - 01.12.1972, Síða 34

Jökull - 01.12.1972, Síða 34
Prior to the aerial survey reported in the present paper, oblique aerial photographs of the Kverkfjöll area were obtained by the British Royal Air Force on 12 March 1944 (Thorarinsson 1950, Fig. 2). The U. S. Air Force took vertical cartographic-quality aerial photo- graphs of part of the Kverkfjöll area on 24 August 1960 (Fig. 3) (Friedman et al. 1969). The present study was conducted coopera- tively by the Terrestrial Sciences Laboratory of the U. S. Air Force Cambridge Researcli Laboratories; the Iceland National Energy Authority; the Division of Geosciences of the Science Institute, University of Iceland; the Infrared Physics Laboratory of the University of Michigan; and the U. S. Geological Survey, as one of a series of aerial infrared thermo- graphic and photographic surveys of tliermal manifestations of Iceland’s neovolcanic zone. INSTRUMENTATION AND SURVEY DATA Tlie MlAl airborne infrared optical-mech- anical line-scanning system, the major instru- ment in the surveys, utilizes a photovoltaic indium antimonide solid-state detector sensi- tive to emitted radiation in the l.Oq to 5.5p, wavelength region when unfiltered as it was operated during night missions in Iceland (Friedman et al. 1969, p. C91—C92). The op- tical elements of the infrared scanner focus infrared radiation emitted from the earth’s surface onto the detector, which transduces the radiation into wideband electrical signals and provides an input to an image recorder. The recording unit electronically records on film a thermal image of the terrain over which it passes to produce a continuous strip infrared image or thermogram. A modification of the recording unit in 1968 permitted simultaneous recording of the electronic signal on film and magnetic tape, thus retaining a semiquantita- tive record of the infrared signal suitable for processing by signal amplitude-level slicing techniques by use of a threshold circuit in the laboratory. On 22 August (2357 IMT) continuous gray- scale infrared images were directly recorded on 70 mm film (Fig. 4). The resulting tonal density of the film emulsion is a nonlinear 32 JÖKULL 22. ÁR function of radiation temperature of the sur- face features depicted (polarity: black = cool, white = warm). According to a modification of the Stefan- Boltzmann law W = &r (T4 - T04) where W = differential radiant flux per unit area g = emissivity factor (black body = 1) cr = Stefan-Boltzmann constant (1.354 x 10~12 cal • cm~2 deg-1 sec'1 or 5.67 X 10-8 W- m-1 deg-4) T = absolute temperature of radiating body <°K) T0 = absolute temperature of surroundings (°K) Emissivity (e) of the surface material (g = 0.95 for basalt surfaces) and actual surface tempera- ture thus control infrared back radiation and tlie resulting tonal density of the film, but the gray scale of the 1966 imagery cannot be quantitatively calibrated because of electronic limitations of the detecting system and scale distortion introduced during direct recording of the signal on film. Nevertheless, the energy transfer function is approximately known (Williams et al. 1968, Fig. 4). The range in radiation temperature of the surface features depicted in 1966 probably exceeds 100°C, rang- ing frorn glacial ice surfaces to open steam vents (Fig. 5). A sketch map (Fig. 5) derived from the 1966 infrared image (Fig. 4) shows the relationship between glacier surfaces (white), thermal manifestations (black), some of the larger crevasses, and direction of glacier melt-water drainage. The infrared images obtained on 26 August 1968 (2125 through 2303 IMT) were recorded simultaneously on 70 mm film and magnetic tape (Fig. 6). The taped data do not have the introduced distortion inherent in the fihn record, and were subsequently processed by an electronic signal-amplitude slicing technique in which the taped signal was divided into a number of equal-intensity map units roughly equivalent to undefined radiation tempera- tures on the surface (Fig. 7). These amplitude slices best show the relative temperature and distribution of hydrothermal features.
Síða 1
Síða 2
Síða 3
Síða 4
Síða 5
Síða 6
Síða 7
Síða 8
Síða 9
Síða 10
Síða 11
Síða 12
Síða 13
Síða 14
Síða 15
Síða 16
Síða 17
Síða 18
Síða 19
Síða 20
Síða 21
Síða 22
Síða 23
Síða 24
Síða 25
Síða 26
Síða 27
Síða 28
Síða 29
Síða 30
Síða 31
Síða 32
Síða 33
Síða 34
Síða 35
Síða 36
Síða 37
Síða 38
Síða 39
Síða 40
Síða 41
Síða 42
Síða 43
Síða 44
Síða 45
Síða 46
Síða 47
Síða 48
Síða 49
Síða 50
Síða 51
Síða 52
Síða 53
Síða 54
Síða 55
Síða 56
Síða 57
Síða 58
Síða 59
Síða 60
Síða 61
Síða 62
Síða 63
Síða 64
Síða 65
Síða 66
Síða 67
Síða 68
Síða 69
Síða 70
Síða 71
Síða 72
Síða 73
Síða 74
Síða 75
Síða 76
Síða 77
Síða 78
Síða 79
Síða 80
Síða 81
Síða 82
Síða 83
Síða 84
Síða 85
Síða 86
Síða 87
Síða 88
Síða 89
Síða 90
Síða 91
Síða 92
Síða 93
Síða 94
Síða 95
Síða 96
Síða 97
Síða 98
Síða 99
Síða 100

x

Jökull

Beinleiðis leinki

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.