Jökull


Jökull - 01.01.2010, Side 82

Jökull - 01.01.2010, Side 82
Horálek and Fischer 1E-3 1E-2 1E-1 1E0 1E1 MPa -1.0 -0.5 0 0.5 1.0 kma) b) c) Figure 11. Angular dependence of the rate of IA evaluated using a step of 10◦; all aftershocks in a); aftershocks linked by speed higher than 100 m/s in c). The slip axis is indicated by a dash line. Space-time distribution of the complete stress filed (dynamic and static) resolved on the fault plane surrounding the rupture induced by an instantaneous stress drop of 10 MPa due to strike slip on a circular area with radius of 100 m in a homogeneous half-space. The method of Bouchon (1997) was used to calculate the stress field. Only the shear stress vector (traction) is depicted because the normal stress is zero. The stress field breaks with time into the permanent (static) part as a result of the near-field deformation and the transient (dynamic) part carried by the propagation carried by the transition of seismic waves. – Þéttleiki stefnunnar á milli hvers skjálfta og eftirskjálfta hans sem fall af snúningshorni í sameiginlegum brotfleti þeirra. Fyrir hvert skjálftapar er jafnframt mæld fjarlægð og tímamunur. Þessar stærðir skilgreina hraða. Myndin sýnir stefnudreifinguna fyrir alla eftirskjálfta í a) en bara fyrir þá eftirskjálfta sem hafa hraða hærri en 100 m/s. Litmyndin í miðju sýnir einfalt líkan af skerspennu umhverfis hringlaga misgengi með fast 10 MPa spennufall. lar plot of the ML>0.5 IAs displays nearly oval form. If only fast IAs are taken into account then the IA- angular-distribution patterns change to the lobe-like character: they show elongation with two lobes along the slip direction, whereas the occurrence of IA in the slip-perpendicular direction markedly diminishes. To explain how a prior earthquake can bring sub- sequent earthquakes to failure, we use the Coulomb failure stress criterion ∆CFS=∆τslip − µ(∆σn − ∆P ), where ∆CFS is the Coulomb stress increment; ∆τslip is the change in shear stress due to the first earthquake resolved in the slip direction of the second earthquake; ∆σn is the change in normal stress due to the first earthquake, resolved in the direction orthog- onal to the second earthquake fault plane; ∆P is the change in pore pressure; µ is the coefficient of fric- tion. To examine the triggering effect we calculated the time-space distribution of ∆CFS (both dynamic and static) on the fault plane surrounding the rupture. The earthquake was represented by an instantaneous and uniform stress drop of 10 MPa on a circular area with a radius of 100 m (earthquake with ML∼2.8) in a homogeneous half-space. In such a case the nor- mal stress change ∆σn is zero and ∆CFS reflects only the slip-parallel component ∆τslip. To calcu- late ∆CFS there was used the method of Bouchon (1997) slightly modified and implemented after Bur- jánek (personal communication). As depicted in Fig- ure 11, the ∆τ field breaks up into two parts with time: the permanent one (static ∆τ ) as a result of the near-field deformation and the transient one (dynamic ∆τ ) carried by the transition of seismic waves. The separation of the static and dynamic parts increases with time. As can be seen in Figure 11, the static ∆CFS distribution pattern manifests a distinct elon- gation in the slip direction, whereas the dynamic ∆τ oscillates (∆τ takes on positive and negative values in each point of the fault plane), which implies that all points on the fault plane are shaken at respec- tive times.Thus we infer that the static stress changes 82 JÖKULL No. 60
Side 1
Side 2
Side 3
Side 4
Side 5
Side 6
Side 7
Side 8
Side 9
Side 10
Side 11
Side 12
Side 13
Side 14
Side 15
Side 16
Side 17
Side 18
Side 19
Side 20
Side 21
Side 22
Side 23
Side 24
Side 25
Side 26
Side 27
Side 28
Side 29
Side 30
Side 31
Side 32
Side 33
Side 34
Side 35
Side 36
Side 37
Side 38
Side 39
Side 40
Side 41
Side 42
Side 43
Side 44
Side 45
Side 46
Side 47
Side 48
Side 49
Side 50
Side 51
Side 52
Side 53
Side 54
Side 55
Side 56
Side 57
Side 58
Side 59
Side 60
Side 61
Side 62
Side 63
Side 64
Side 65
Side 66
Side 67
Side 68
Side 69
Side 70
Side 71
Side 72
Side 73
Side 74
Side 75
Side 76
Side 77
Side 78
Side 79
Side 80
Side 81
Side 82
Side 83
Side 84
Side 85
Side 86
Side 87
Side 88
Side 89
Side 90
Side 91
Side 92
Side 93
Side 94
Side 95
Side 96
Side 97
Side 98
Side 99
Side 100
Side 101
Side 102
Side 103
Side 104
Side 105
Side 106
Side 107
Side 108
Side 109
Side 110
Side 111
Side 112
Side 113
Side 114
Side 115
Side 116
Side 117
Side 118
Side 119
Side 120
Side 121
Side 122
Side 123
Side 124
Side 125
Side 126
Side 127
Side 128
Side 129
Side 130
Side 131
Side 132
Side 133
Side 134
Side 135
Side 136
Side 137
Side 138
Side 139
Side 140
Side 141
Side 142
Side 143
Side 144
Side 145
Side 146
Side 147
Side 148
Side 149
Side 150
Side 151
Side 152
Side 153
Side 154
Side 155
Side 156
Side 157
Side 158
Side 159
Side 160
Side 161
Side 162
Side 163
Side 164
Side 165
Side 166
Side 167
Side 168
Side 169
Side 170
Side 171
Side 172
Side 173
Side 174
Side 175
Side 176
Side 177
Side 178
Side 179
Side 180
Side 181
Side 182
Side 183
Side 184
Side 185
Side 186
Side 187
Side 188
Side 189
Side 190
Side 191
Side 192
Side 193
Side 194
Side 195
Side 196
Side 197
Side 198
Side 199
Side 200
Side 201
Side 202
Side 203
Side 204
Side 205
Side 206
Side 207
Side 208
Side 209
Side 210
Side 211
Side 212
Side 213
Side 214
Side 215
Side 216
Side 217
Side 218
Side 219
Side 220
Side 221
Side 222
Side 223
Side 224

x

Jökull

Direkte link

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.