Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.01.2010, Qupperneq 82

Jökull - 01.01.2010, Qupperneq 82
Horálek and Fischer 1E-3 1E-2 1E-1 1E0 1E1 MPa -1.0 -0.5 0 0.5 1.0 kma) b) c) Figure 11. Angular dependence of the rate of IA evaluated using a step of 10◦; all aftershocks in a); aftershocks linked by speed higher than 100 m/s in c). The slip axis is indicated by a dash line. Space-time distribution of the complete stress filed (dynamic and static) resolved on the fault plane surrounding the rupture induced by an instantaneous stress drop of 10 MPa due to strike slip on a circular area with radius of 100 m in a homogeneous half-space. The method of Bouchon (1997) was used to calculate the stress field. Only the shear stress vector (traction) is depicted because the normal stress is zero. The stress field breaks with time into the permanent (static) part as a result of the near-field deformation and the transient (dynamic) part carried by the propagation carried by the transition of seismic waves. – Þéttleiki stefnunnar á milli hvers skjálfta og eftirskjálfta hans sem fall af snúningshorni í sameiginlegum brotfleti þeirra. Fyrir hvert skjálftapar er jafnframt mæld fjarlægð og tímamunur. Þessar stærðir skilgreina hraða. Myndin sýnir stefnudreifinguna fyrir alla eftirskjálfta í a) en bara fyrir þá eftirskjálfta sem hafa hraða hærri en 100 m/s. Litmyndin í miðju sýnir einfalt líkan af skerspennu umhverfis hringlaga misgengi með fast 10 MPa spennufall. lar plot of the ML>0.5 IAs displays nearly oval form. If only fast IAs are taken into account then the IA- angular-distribution patterns change to the lobe-like character: they show elongation with two lobes along the slip direction, whereas the occurrence of IA in the slip-perpendicular direction markedly diminishes. To explain how a prior earthquake can bring sub- sequent earthquakes to failure, we use the Coulomb failure stress criterion ∆CFS=∆τslip − µ(∆σn − ∆P ), where ∆CFS is the Coulomb stress increment; ∆τslip is the change in shear stress due to the first earthquake resolved in the slip direction of the second earthquake; ∆σn is the change in normal stress due to the first earthquake, resolved in the direction orthog- onal to the second earthquake fault plane; ∆P is the change in pore pressure; µ is the coefficient of fric- tion. To examine the triggering effect we calculated the time-space distribution of ∆CFS (both dynamic and static) on the fault plane surrounding the rupture. The earthquake was represented by an instantaneous and uniform stress drop of 10 MPa on a circular area with a radius of 100 m (earthquake with ML∼2.8) in a homogeneous half-space. In such a case the nor- mal stress change ∆σn is zero and ∆CFS reflects only the slip-parallel component ∆τslip. To calcu- late ∆CFS there was used the method of Bouchon (1997) slightly modified and implemented after Bur- jánek (personal communication). As depicted in Fig- ure 11, the ∆τ field breaks up into two parts with time: the permanent one (static ∆τ ) as a result of the near-field deformation and the transient one (dynamic ∆τ ) carried by the transition of seismic waves. The separation of the static and dynamic parts increases with time. As can be seen in Figure 11, the static ∆CFS distribution pattern manifests a distinct elon- gation in the slip direction, whereas the dynamic ∆τ oscillates (∆τ takes on positive and negative values in each point of the fault plane), which implies that all points on the fault plane are shaken at respec- tive times.Thus we infer that the static stress changes 82 JÖKULL No. 60
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160
Qupperneq 161
Qupperneq 162
Qupperneq 163
Qupperneq 164
Qupperneq 165
Qupperneq 166
Qupperneq 167
Qupperneq 168
Qupperneq 169
Qupperneq 170
Qupperneq 171
Qupperneq 172
Qupperneq 173
Qupperneq 174
Qupperneq 175
Qupperneq 176
Qupperneq 177
Qupperneq 178
Qupperneq 179
Qupperneq 180
Qupperneq 181
Qupperneq 182
Qupperneq 183
Qupperneq 184
Qupperneq 185
Qupperneq 186
Qupperneq 187
Qupperneq 188
Qupperneq 189
Qupperneq 190
Qupperneq 191
Qupperneq 192
Qupperneq 193
Qupperneq 194
Qupperneq 195
Qupperneq 196
Qupperneq 197
Qupperneq 198
Qupperneq 199
Qupperneq 200
Qupperneq 201
Qupperneq 202
Qupperneq 203
Qupperneq 204
Qupperneq 205
Qupperneq 206
Qupperneq 207
Qupperneq 208
Qupperneq 209
Qupperneq 210
Qupperneq 211
Qupperneq 212
Qupperneq 213
Qupperneq 214
Qupperneq 215
Qupperneq 216
Qupperneq 217
Qupperneq 218
Qupperneq 219
Qupperneq 220
Qupperneq 221
Qupperneq 222
Qupperneq 223
Qupperneq 224

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.