Jökull


Jökull - 01.06.2000, Síða 52

Jökull - 01.06.2000, Síða 52
Aeromagnetic measurements over Mýrdalsjökull due to its remanent and induced magnetization, un- less its temperature is of the order of 500  C or above. Superimposed on this gravity high there is a horse- shoe shaped high along the south, west and east rims of the caldera. It may originate in intrusions concentrated at the border of the caldera above 2.5 km depth. If these intrusions mark the lateral extent of the magma chamber it would be circular and 6 km across. Although acid rock occurs in most nunataks around the caldera, the total volume of acid rocks is proba- bly small as it would tend to cause a negative gravity anomaly (Guðmundsson, 1994b). GENERAL DESCRIPTION OF THE RESIDUAL MAGNETIC FIELD The magnetic field over the mountainous Mýrdals- jökull and Eyjafjallajökull region appears to form a part of the Brunhes age magnetic high of the ea- stern volcanic zone. This is especially clear around Eyjafjallajökull and the westernmost part of Mýr- dalsjökull. The high is interrupted by a wide SE- trending negative anomaly around the large Torfajök- ull volcanic center (no. 79 in Figure 9 of Jónsson et al., 1991), reaching the northern periphery of Mýr- dalsjökull. The field is relatively smooth along the ea- stern edge of Mýrdalsjökull. The most noticeable feature of the residual field is an NNW-SSE elongated depression of approxima- tely 12 by 8 km in size, concentric to the subglacial caldera. Its amplitude at our flight altitude is -1300 nT, while the residual field surrounding it is of the order of +600 nT. We shall refer to this 2000 nT magnetic bowl and its rim as the Katla magnetic anomaly. Several localized anomalies are seen at the rim or farther away from the caldera. A broad magnetic high extends south from the eastern part of Mýrdalsjökull, to the coast. Its N-S trend reflects the trend of the mountain ranges east of the village of Vík but it could have a deeper source. Some minor anomalies are found outside the glaciers, most of unknown origin. A small negative anomaly is clearly related to the Tindfjallajökull central volcano (Figure 2, where lines 11 and iii cross). THE KATLA ANOMALY Data from several boreholes within or near the vol- canic zones in Iceland show little systematic change in magnetic susceptibility down to 2 or even 3 km (Kristjánsson and Watkins, 1977). The maximum depth of magnetic contrasts in the Icelandic crust must be greater than this and may be set by the Curie point for fairly pure magnetite (500-560  C). There is rea- son to believe that a thermal anomaly is present under the Katla caldera, associated with the magma cham- ber inferred from seismic profiling. If this is the case, a broad negative magnetic anomaly is to be expected, in particular if the Curie point isotherm reaches close to the surface (  1 km, say). However, such an anom- aly would not be distinguishable from one due to the presence of non-magnetic material such as tuffs surrounded by crystalline rocks of normal magnetic properties. The maximum depth to the sources of the field may be estimated using the half-slope depth method (e.g. Sharma, 1986). In the central northern part of the Katla anomaly (along line 8 of Figure 2) the source appears to lie below sea level. In the southern part of the anomaly the source would, on the other hand, lie close to the bedrock surface. In addition to the uncertainty of this method, the altitude of the aeropla- ne in the older lines was not well known. We model the field using the magnetic pole concept (Telford et al., 1990). The generating bo- dy is split into a number of square vertical columns, all with the same uniform magnetization and their contributions to the field are summed up. We assume the columns to be sufficiently narrow to be replaced with magnetic dipoles, with monopoles at the top and bottom. The depth to the bottom monopoles is held constant across the domain of the model but the elevation of the top monopoles varies. To model the field over Mýrdalsjökull we use for the upper poles the two dimensional topographic grid of the area provided by Björnsson et al. (2000). The depth of the bottom poles (2000 m below sea level) is not important as long as it is kept constant. In order to eliminate edge effects, the working area is extended in all directions by an 8 km wide tapering zone (not included in the figures) where the topograp- JÖKULL No. 49 51
Síða 1
Síða 2
Síða 3
Síða 4
Síða 5
Síða 6
Síða 7
Síða 8
Síða 9
Síða 10
Síða 11
Síða 12
Síða 13
Síða 14
Síða 15
Síða 16
Síða 17
Síða 18
Síða 19
Síða 20
Síða 21
Síða 22
Síða 23
Síða 24
Síða 25
Síða 26
Síða 27
Síða 28
Síða 29
Síða 30
Síða 31
Síða 32
Síða 33
Síða 34
Síða 35
Síða 36
Síða 37
Síða 38
Síða 39
Síða 40
Síða 41
Síða 42
Síða 43
Síða 44
Síða 45
Síða 46
Síða 47
Síða 48
Síða 49
Síða 50
Síða 51
Síða 52
Síða 53
Síða 54
Síða 55
Síða 56
Síða 57
Síða 58
Síða 59
Síða 60
Síða 61
Síða 62
Síða 63
Síða 64
Síða 65
Síða 66
Síða 67
Síða 68
Síða 69
Síða 70
Síða 71
Síða 72
Síða 73
Síða 74
Síða 75
Síða 76
Síða 77
Síða 78
Síða 79
Síða 80
Síða 81
Síða 82
Síða 83
Síða 84
Síða 85
Síða 86
Síða 87
Síða 88
Síða 89
Síða 90
Síða 91
Síða 92
Síða 93
Síða 94
Síða 95
Síða 96
Síða 97
Síða 98
Síða 99
Síða 100
Síða 101
Síða 102
Síða 103
Síða 104
Síða 105
Síða 106

x

Jökull

Beinleiðis leinki

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.