Náttúrufræðingurinn - 2013, Side 85
85
Tímarit Hins íslenska náttúrufræðifélags
Á þessu stigi liggur ekki fyrir
hvort raunhæft sé að nota hitakæra
stofna til að framleiða etanól úr
íslenskum lífmassa. Framleiðsla á
etanóli á stórum skala á nú undir
högg að sækja vegna kostnaðar
og samkeppni við verð á jarðefna-
eldsneyti og etanóli úr einfaldara
hráefni. Í Bandaríkjunum er t.d.
etanólframleiðsla úr mun einfaldari
lífmassa (sterkju) enn niðurgreidd
af ríkinu. Skoða þyrfti þetta í stærra
samhengi, m.a. með skuldbind-
ing um Íslands hvað varðar
framleiðslu á lífrænu elds neyti og
markmiði og reglugerðum Evrópu-
bandalagsins hvað varðar aukið
hlutfall lífeldsneytis í fram tíðinni.
Á móti kemur, að ef etanól yrði
framleitt hér á landi myndi það
leiða til minni innflutnings á jarð-
efnaeldneyti og sparnaði í gjaldeyri.
Allt þetta þyrfti að taka með í reikn-
inginn til að gera fullkomlega grein
fyrir möguleikum á slíkri fram-
leiðslu á Íslandi.
Summary
Production of ethanol from
complex biomass with thermo-
philic bacteria
This review focuses upon ethanol pro-
duction by microbial ferment at ions
with the main emphasis on thermo-
philic bacteria. Production of biofuels
in general has gained increas ed interest
in recent years, mainly due to the sub-
stantial increase in the use of fossil fuels.
This has led to elevated concentrat ion
of carbon dioxide in the atmos phere
and is considered to be the main cause
of increasing tempera tures on Earth.
Ethanol is one type of biofuel that can
be produced by fermentation and its
production has increased hugely in the
last decade. The largest part of this in-
crease derives from simple substrates
(sugar and starch based biomass)
which are in direct competition with
the food and feed industry. Therefore,
increased interest towards the utiliza-
tion of more complex biomass, lignocel-
lulose has arisen. Fermentation path-
ways used by both bacteria and yeast
will be focused upon with the main em-
phasis on thermophilic bacteria, mainly
isolated from Icelandic hot springs.
Yields of ethanol, both from simple
sugars as well as ligno cellulosic hydro-
lysates will be focus ed upon. The main
genera of thermophilic bacteria
(Clostridium, Thermoanaerobacter, Thermo-
anaero bacterium) are described and the
pros and cons of using these bacteria
for bioethanol production are dis-
cussed. Finally, the possibility of using
such microbes for bioethanol produc-
tion from Icelandic biomass will be de-
bated.
Heimildir
1. Renewable Fuels Association 2010. Ethanol industry statistics: annual
world ethanol production by country. Washington. Available from:
http://www.ethanolrfa.org/pages/statistics/#E
2. Sanchez, O.J. & Cardona, C.A. 2008. Trends in biotechnological produc-
tion of fuel ethanol from different feedstocks. Bioresource Technology 13.
5270–95.
3. Moisier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M. &
Ladisch, M. 2005. Features of promising technologies for pretreatment of
lignocellulosic biomass. Bioresource Technology 96. 673–686.
4. Olsson, L. & Hahn-Hagerdahl, B. 1996. Fermentation of lignocellulosic
hydrolysates for ethanol production. Enzyme and Micorbial Technology
18. 312–331.
5. Liu, S.Y, Rainey., F.A., Morgan., H.W., Mayer, F. & Wiegel, J. 1996. Ther-
moanaerobacterium aotearoense sp. nov., a slightly acidophilic, anaerobic
thermophile isolated from various hot springs in New Zealand, and
emendation of the genus Thermoanaerobacterium. International Journal of
Systematic Bacteriology 46. 388–396.
6. Ahring, B.K., Licht, D., Schmidt, A.S. & Sommer, P. 1999. Production of
ethanol from wet oxidised wheat straw by Thermoanaerobacter mathranii.
Bioresource Technology 68. 3–9.
7. Taylor, M.P., Eley, K.L., Martin, S., Tuffin, M.I., Burton, S.G. & Cowan,
D.A. 2009. Thermophilic etahnologenesis: future prospects for second-
generation bioethanol production. Trends in Biotechnology. 27. 398–405.
8. Sanchez, R.G., Karhumaa, K., Fonseca, C., Nogue, V.S., Almeida, F.R.M.,
Larsson, C.U., Bengtsson, O., Bettinga, M., Hahn-Hagerdal, B. & Gor-
wa-Grauslund, M.F. 2010. Improved xylose and arabinose utilization by
an industrially recombinant Saccharomyces cerevisae strain using evolu-
tionary engineering. Biotechnology for Biofuels 3. 1–11. doi:
10.1186/1754-6834-3-13
9. Wiegel, J. & Ljungdahl, L.G. 1981. Thermoanaerobacter ethanolicus gen.
nov., spec. nov., a new, extreme thermophilic, anaerobic bacterium.
Archives of Microbiology 128. 343–348.
10. Koskinen, P.E.P., Beck, S.R.B., Jóhann Örlygsson & Puhakka, J.A. 2008.
Ethanol and hydrogen production by two thermophilic, anaerobic bacte-
ria isolated from Icelandic geothermal areas. Biotechnology and Bioengi-
neering 101. 679–690.
11. Georgieva, T.I., Mikkelsen, M.J. & Ahring, B.A. 2008. High etahanol toler-
ance of the thermophilic anaerobic ethanol producer Thermoanaerobacter
BG1L1. Central European Journal of Biology 2. 364–377.
12. Arnheiður Rán Almarsdóttir, Ingólfur Bragi Gunnarsson, Tarazewicz, A.
& Jóhann Örlygsson. 2010. Hydrogen production from sugars and com-
plex biomass by Clostridium species, AK14, isolated from Icelandic hot
spring. Icelandic Agricultural Sciences 23. 61–71.
13. Arnheiður Rán Almarsdóttir, Margrét Auður Sigurbjörnsdóttir & Jóhann
Örlygsson 2012. Effect of various factors on ethanol yields from ligno-
cellulosic biomass by Thermoanaerobacterium AK17. Biotechnology and
Bioengineering 109. 686–694.
14. Jóhann Örlygsson, Margrét Auður Sigurbjörnsdóttir & Hilma Eiðsdóttir
Bakken 2010. Bioprospecting thermophilic ethanol and hydrogen
producing bacteria from Icelandic hot springs. Icelandic Agricultural
Sciences 23. 75–87.
15. Ben-Bassat, A., Lamed, R. & Zeikus, J.G. 1981. Ethanol-production by
thermophilic bacteria – metabolic control of end product formation in
Thermoanaerobium brockii. Journal of Bacteriology 146. 192–199.
16. Lamed, R., Su, T.M. & Brennan, M.J. 1980. Effect of stirring on ethanol-
production by Clostridium thermocellum. Abstracts of Papers of the
American Chemical Society, 180 (AUG), 44-MICR.
17. Fardeau, M.L., Faudon, C., Cayol, J.L., Magot, M., Patel, B.K.C. &
Ollivier, B. 1996. Effect of thiosulphate as electron acceptor on glucose and
xylose oxidation by Thermoanaerobacter finnii and a Thermoanaerobacter sp.
isolated from oil field water. Research in Microbiology 147. 159–165.
18. Lovitt, R.W., Longin, R. & Zeikus, J.G. 1984. Ethanol production by ther-
mophilic bacteria: physiological comparison of solvent effects on parent
and alcohol-tolerant strains of Clostridium thermohydrosulfuricum.
Applied and Environmental Microbiology 48. 171–177.
19. Larsen, L., Nielsen, P. & Ahring, B.K. 1997. Thermoanaerobacter mathranii
sp nov, an ethanol-producing, extremely thermophilic anaerobic bacte-
rium from a hot spring in Iceland. Archives of Microbiology 168. 114–119.
20. Wiegel, J. & Lungdahl, L.G. 1981. Thermoanaerobacter ethanolicus gen.
nov., spec. nov., a new extreme thermophilic, anaerobic bacterium.
Archives of Microbiology 128. 343–348.
21. Gu, Y., Yu, J., Hui, W., Xudong, L., Zhilin, L., Jian, L., Han, X., Zhaobing,
S., Hongjun, D., Yunliu, Y., Yin, L., Weihong, J. & Sheng, Y. 2012. Eco-
monical challenges to microbial producers of butanol: Feedstock,
butanol ratio and titer. Biotechnology Journal 6. 1348–1357.
22. Lin, C-W., Wu, C-H., Tran, D-T., Shih, M-C., Li, W-H. & Wu, C-F. 2010.
Mixed culture fermentation from lignocellulosic materials using thermo-
philic lignocellulose-degrading anaerobes. Process Biochemistry 46.
489–493.
23. Demain, A.L., Newcomb, M. & Wu, J.H. 2005. Cellulase, Clostridia, and
Ethanol. Microbiology and molecular biology reviews 69. 124–154.
24. Lee, Y.E., Jain, M.K., Lee, C.Y., Lowe, S.E. & Zeikus, J.G. 1993. Taxonomic
distinction of saccharolytic thermophilic anaerobes – description of
Thermoanaerobacterium xylanolyticum gen-nov, sp-nov, and Thermoan-
aerobacterium saccharolyticum gen-nov, sp-nov – reclassification of Ther-
moanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium
thermohydrosulfuricum E100-69 as Thermoanaerobacter brockii comb-nov,
Thermoanaerobacterium thermosulfurigenes comb-nov, and Thermoanaero-