Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.01.2012, Qupperneq 48

Jökull - 01.01.2012, Qupperneq 48
Dugmore and Newton Vegetated plateau and terraced areas are likely to contain the best indication of fallout thickness, slopes are likely to have experienced either erosion of the primary fallout thickness, or thickening due to tephra mobilisation down-slope. Sediment traps such as well-vegetated basins are likely to have the most com- plete tephra records and if their catchments are sta- ble, they are unlikely to contain multiple layers of re- worked tephra (e.g. Kirkbride and Dugmore, 2001a). Lowland, ecologically-favoured areas are likely to re- cover more rapidly from the impacts of tephra fall than upland, ecologically marginal areas, and as a re- sult lowland tephra sequences are likely to have less disturbance. Crucially, if a tephra layer is found in multiple profiles in contrasting geomorphological set- tings, then it is not likely to be the product of lo- calised tephra re-mobilisation and is likely to define an isochron. Tephra deposits will experience varying degrees of reworking and redistribution while they are ex- posed to the surface environment. Original obser- vations of the season-by-season changes to the fall- out from the 2010 AD eruption of Eyjafjallajökull show that the small-scale variability of tephra layer thickness (a good indication of the cumulative amount of post-depositional change) is a reflection of land- scape stability and the completeness and depth of vegetation cover. The mobilisation of a tephra de- posit - and its potential movement across the land- scape - will be minimised if the full thickness of the tephra layer is rapidly stabilised by a spatially con- tinuous vegetation cover. Redistribution will result in areas stripped of primary tephra deposits. This pro- cess has been observed happening to Ey2010 in the un-vegetated forelands of the southern margin of Ey- jafjallajökull ice cap, and also to the fallout of the c. 1357 eruption of Katla on vegetated surfaces at Fell í Mýrdalur (Figure 1). The stripping of unconsolidated tephra from exposed, unvegetated surfaces affected by winds, water and frost action is to be expected. The reasons for the near-complete removal of tephra from grass-covered, slopes of aggrading soil are less obvi- ous. Fell í Mýrdalur lay beneath the principal axis of fallout in 1357 AD, was comparatively close to the eruption site and received coarse (sand-grade) fallout (Einarsson et al., 1980; Figure 1). If, as is likely, hill slopes of around 30◦ near to the farm were covered by a well-grazed sward, there would have been little opportunity for a decimetre-scale deposit of coarse- grained tephra to stabilise, especially as this is one of the wettest parts of Iceland. In contrast, the accu- mulation of a continuous ’rain’ of silt-grade aeolian sediment did take place, as did the discrete episodes of silt-grade, mm-thickness fallout from both Hekla 1300 and 1341 eruptions; the crucial difference being that the fine-grained silts could work into the vegeta- tion mat and thus be incorporated into the stratigra- phy, whereas the coarse grained tephra from c. 1357 AD evidently did not. THE USE OF POORLY PROVENANCED TEPHRA STRATIGRAPHIES In contrast to the generally well-known tephrochrono- logy of the last 1200 years, pre-Landnám tephra strati- graphies may contain many unidentified layers. The basic framework is secure and built around one of Thórarinsson’s great legacies, knowledge of the great silicic layers from Hekla; Hekla-S, Hekla 3, Hekla 4 and Hekla 5 (Thórarinsson, 1944; Larsen and Thórar- insson, 1977), now supplemented with a thorough un- derstanding of the volcanic history of Katla (Larsen et al., 2000, 2001; Óladóttir et al., 2005), Gríms- vötn, Bárdarbunga and Kverkfjöll volcanic systems (Óladóttir et al., 2011b). These studies have iden- tified over 550 Holocene tephra layers, established their chemical characteristics and revealed the erup- tion frequency of key volcanic systems, but despite these monumental achievements the spatial distribu- tions of most Holocene layers is yet to be established. As a result, local details can be usefully added using a ’barcode’ approach that replicates recognisable strati- graphic sequences over short distances (Figure 2b). The key to the ’barcode’ approach is that it uses the thicknesses and stratigraphic order of layers to make very short range correlations typically over dis- tances of 10–100m. This approach is unlikely to work over longer (km scale) distances because of the effects of different tephra plume orientations. Even if a short stratigraphic sequence of tephra layers are all from the 46 JÖKULL No. 62, 2012
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160
Qupperneq 161
Qupperneq 162
Qupperneq 163
Qupperneq 164
Qupperneq 165
Qupperneq 166
Qupperneq 167
Qupperneq 168
Qupperneq 169
Qupperneq 170
Qupperneq 171
Qupperneq 172
Qupperneq 173
Qupperneq 174
Qupperneq 175
Qupperneq 176
Qupperneq 177
Qupperneq 178
Qupperneq 179
Qupperneq 180
Qupperneq 181
Qupperneq 182
Qupperneq 183
Qupperneq 184
Qupperneq 185
Qupperneq 186
Qupperneq 187
Qupperneq 188
Qupperneq 189
Qupperneq 190
Qupperneq 191
Qupperneq 192
Qupperneq 193
Qupperneq 194
Qupperneq 195
Qupperneq 196
Qupperneq 197
Qupperneq 198
Qupperneq 199
Qupperneq 200

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.