Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.01.2012, Qupperneq 89

Jökull - 01.01.2012, Qupperneq 89
Mass and volume changes of Langjökull ice cap, Iceland, ∼1890 to 2009 above assumptions are in good agreement with the elevation difference obtained between both the 1986 and 1997 DEMs, and 1997 and 2004 DEMs at the highest areas of the glacier. Furthermore, the uncer- tainty due to this ’ad hoc’ method yields only minor errors in total volume change estimates as the eleva- tion changes in the lower regions are by far larger. Comparison of the elevation maps at mountain tops and other prominent features did not suggest signif- icant vertical shift. We assume the accuracy of the 1945 DEM to be ∼5 m and ∼7 m for the 1937 map. We believe, however, that the average vertical bias is much smaller, less than a few metres in all the recon- structed maps. In error estimates of volume change based on DEM difference we assume possible bias as half of the random error. Mapping of the LIA maximum margin The LIA maximum extent of Langjökull was delin- eated from geomorphological field evidence such as lateral or terminal moraines, ice cored hummocky moraines, fluted terrain and trimlines and mapped from high resolution aerial photographs using remote sensing software ArcGis. Historical documents, maps and photographs from the 19th century to the early 20th century, along with field observations, detailed oblique and aerial photographs support the estimated LIA maximum extent (e.g. Wright, 1935; Sigbjarnar- son, 1967; Geirsdóttir et al., 2009; Kirkbride and Dugmore, 2006; Larsen et al., 2010) Meteorological observations In this study we primarily investigate the sensitivity of the mass balance to temperature changes, using data from the meteorological station Hveravellir in central Iceland (location in Figure 1). The meteoro- logical data from Hveravellir reach back to the year 1966. Hence, this data is supplemented with observa- tions from a meteorological station at Stykkishólmur in W-Iceland (the longest temperature record in Ice- land, reaching back to the year 1822; location in Fig- ure 1, e.g. Sigurðsson and Jónsson, 1995; Hanna et al., 2004). The climate record from Stykkishólmur is however damped due to the proximity to the ocean, while the station at Hveravellir reflects inland temper- atures (Björnsson et al., 2005). RESULTS AND DISCUSSION Mass balance from in situ observations The average measured 1996–1997 to 2008–2009 mass balance at sites along an approximate central flow line down a south outlet of Langjökull is shown in Fig- ure 6. The winter and summer balance is highly vari- able; the standard deviation of measured balance at each survey site is between 0.25 and 0.70 mwe yr−1 for both the winter and the summer balance, higher in the accumulation zone for the winter balance and in the ablation area for the summer balance. The bw gra- dient (dbw/dz) is roughly linear by 0.4 mwe yr−1 per 100 m in elevation until reaching the highest peaks where some of the winter snow is blown off. The overall summer balance gradient (dbs/dz) is ∼0.7 mwe yr−1 per 100 m in elevation, somewhat higher in the lowest part and significantly lower in the upper accu- mulation area; the gradient is mostly controlled by the surface albedo (Gudmundsson et al., 2009b). The net balance has a gradient (almost linear) of 1.1 mwe yr−1 per 100 m in elevation (the deviating net balance at the highest elevation is excluded). The average ELA of 1996–1997 to 2008–2009 is ∼1090 m on Langjökull southern dome, but about 1300 m on the north dome (Figures 4d and 7). In Figure 7, the zero net balance contour of the 2008–2009 bn-grid mostly coincides with the dark/light boundary of an ENVISAT image from 20 October 2009. The dark/light boundary is in- terpreted as the boundary between ice or old firn and the last winter snow residue. The specific winter-, summer- and net balances have varied between 1.1 and 2.1 (mean 1.74, std. dev. 0.33), -2.1 and -4.0 (mean -3.00, std. dev. 0.55), -0.4 and -1.9 (mean -1.26, std. dev. 0.48) in mwe yr−1, re- spectively, from 1996–1997 to 2008–2009 (Table 1; Figure 8). During these 13 years, the net balance has always been negative and the total cumulative mass loss 16.4 mwe yr−1 (Figure 9). Hence, the glacier has lost 8.6% of its mass during this 13 year survey pe- riod. Scatter plots, demonstrating the relationship of bn to both bw and bs (Figure 10), indicate the zero mass balance turnover b0−bal (bw = -bs) for the cur- rent topography of Langjökull to be ∼1.8 mwe yr−1. The average winter balance has been 1.73 mwe yr−1 or 96% of b0−bal while the summer balance average is JÖKULL No. 62, 2012 87
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160
Qupperneq 161
Qupperneq 162
Qupperneq 163
Qupperneq 164
Qupperneq 165
Qupperneq 166
Qupperneq 167
Qupperneq 168
Qupperneq 169
Qupperneq 170
Qupperneq 171
Qupperneq 172
Qupperneq 173
Qupperneq 174
Qupperneq 175
Qupperneq 176
Qupperneq 177
Qupperneq 178
Qupperneq 179
Qupperneq 180
Qupperneq 181
Qupperneq 182
Qupperneq 183
Qupperneq 184
Qupperneq 185
Qupperneq 186
Qupperneq 187
Qupperneq 188
Qupperneq 189
Qupperneq 190
Qupperneq 191
Qupperneq 192
Qupperneq 193
Qupperneq 194
Qupperneq 195
Qupperneq 196
Qupperneq 197
Qupperneq 198
Qupperneq 199
Qupperneq 200

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.