Náttúrufræðingurinn

Árgangur

Náttúrufræðingurinn - 2017, Síða 58

Náttúrufræðingurinn - 2017, Síða 58
Náttúrufræðingurinn 58 Þakkir Höfundar þakka Evu Maríu Ingvadóttir fyrir góðar ábendingar og yfir- lestur. Heimildir 1. Goldemberg, J. 2008. Environmental and ecological dimensions of biofu- els. Í: Proceedings of the Conference on the Ecological Dimensions of Biofuels. Washington. 1–17. 2. Venkata Mohan, S. & Pandey, A. 2013. Biohydrogen production: An introduction. Bls. 1–24 í: Biohydrogen (ritstj. Pandey, A., Chang, J.-S., Hallenbeck, P.C. & Larroche, C.) Elsevier, Amsterdam. 3. Wang, J. & Wan, W. 2009. Factors influencing fermentative hydrogen production: A review. International Journal of Hydrogen Energy 34. 799–811. 4. Hallenbeck, P.C., Abo-Hashesh, M. & Ghosh. D. 2012. Strategies for improving biological hydrogen production. Bioresource Technology 111. 1–9. 5. Levin, D.B., Pitt, L. & Love, M. 2004. Biohydrogen production: prospects and limitations to practical application. International Journal of Hydro- gen Energy 29. 173–185. 6. Hawkes, F.R., Dinsdale, R., Hawkes, D.L. & Hussy, I. 2002. Sustainable fermentative hydrogen production: challenges for process optimization. International Journal of Hydrogen Energy 27. 1339–1347. 7. Sanchez, O.J. & Cardona, C.A. 2008. Trends in biotechnological produc- tion of fuel ethanol from different feedstocks. Bioresource Technology 13. 5270–95. 8. Lee, Y.E., Jain, M.K., Lee, C.Y., Lowe, S.E. & Zeikus, J.G. 1993. Taxonomic distinction of saccharolytic thermophilic anaerobes – description of Ther- moanaerobacterium xylanolyticum gen-nov, sp-nov, and Thermoanaerobacte- rium saccharolyticum gen-nov, sp-nov – reclassification of Thermoanaerobi- um brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfuricum E100-69 as Thermoanaerobacter brockii comb-nov, Thermoanaerobacterium thermosulfurigenes comb-nov, and Thermoanaero- bacter thermohydrosulfuricus comb-nov, respectively – and transfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus. International Journal of Systematic Bacteriology 43. 41–51. 9. Wiegel, J. & Ljungdahl, L.G. 1981. Thermoanaerobacter ethanolicus gen. nov., spec. nov., a new, extreme thermophilic, anaerobic bacterium. Archives of Microbiology 128. 343–348. 10. Arnheiður Rán Almarsdóttir, Margrét Auður Sigurbjörnsdóttir & Jóhann Örlygsson. 2012. Effect of various factors on ethanol yields from lignocel- lulosic biomass by Thermoanaerobacterium AK17. Biotechnology and Bio- engineering 109. 686–694. 11. Liu, S-Y., Rainey, F.A., Morgan, H.W., Mayer, F. & Wiegel, J. 1996. Ther- moanaerobacterium aotearoense sp. nov., a slightly acidophilic anaerobic thermophile isolated from various hot springs in New Zealand, and emendation of the genus Thermoanaerobacterium. International Journal of Systematic Bacteriology 46. 388–396. 12. Rainey, F.A., Donnison, A.M., Jansen, P.H., Saul, D., Rodrigo, A., Bergquist, P.I., Daniel, R.M., Stackebrandt, E. & Morgan, H.W. 1994. Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov.: an obligately anaerobic extremely thermophilic, cellulolytic bacterium FEMS Microbiology Letters 120. 263–266. 13. Taylor, M.P., Eley, K.L., Martin, S., Tuffin, M.I., Burton, S.G. & Cowan, D.A. 2009. Themophilic ethanologenesis: future prospects for second generation bioethanol production. Trends in Biotechnology 27. 398–405. 14. Sanchez, R.G., Karhumaa, K., Fonseca, C., Nogue, V.S., Almeida, F.R.M., Larsson, C.U., Bengtsson, O., Bettinga, M., Hahn-Hagerdal, B. & Gorwa- Grauslund, M.F. Improved xylose and arabinose utilization by an indus- trially recombinant Saccharomyces cerevisae strain using evolutionary engineering. Biotechnology for Biofuels 3. 1–11. 15. Stams, A.J.M. & Hansen, J.A. 1981. Fermentation of glutamate and other compounds by Acidaminobacter hydrogenoformans gen. nov. sp. nov., an obligate anaerobe isolated from black mud. Studies with pure cultures and mixed cultures with sulfate-reducing and methanogenic bacteria. Archives of Microbiology 137. 329–337. 16. Parte, A.C. 2014. LPSN – List of prokaryotic names with standing in nomenclature. Nucleic Acid Reserach. 42. D613–D616. 17. Euzéby, J.P. 1997. List of bacterial names with standing in nomenclature: A folder available on the internet. International Journal of Systematic and Evolutionary Microbiology 47. 590–592. 18. Cann, I.K., Stroot, P.G., Mackie, K.R., White, B.A. & Mackie, R.I. 2001. Characterization of two novel saccharolytic, anaerobic thermophiles, Thermoanaerobacterium polysaccharolyticum sp. nov. and Thermoanaerobac- terium zeae sp. nov., and emendation of the genus Thermoanaerobacterium. International Journal of Systematic and Evolutionary Microbiology 51. 293–302. 19. Máney Sveinsdóttir, Steinar Rafn Beck Baldursson & Jóhann Örlygsson. 2009. Ethanol production from monosugars and lignocellulosic biomass by thermophilic bacteria isolated from Icelandic hot springs. Icelandic Agricultural Sciences 22. 45–58. 20. Kublanov, I.V., Prokofeva, M.I., Kostrikina, N.A., Kolganova, T.V., Tourova, T.P., Wiegel, J. & Bonch-Osmolovskaya, E.A. 2007. Thermoanaerobacterium aciditolerans sp. nov., a moderate thermoacidophile from a Kamchatka hot spring. International Journal of Systematic and Evolutionary Micro- biology 57. 260–264. 21. Ren, N., Cao, G., Wang, A., Lee, D., Guo, W. & Zhu, Y. 2008. Dark fermen- tation of xylose and glucose mix using isolated Thermoanaerobacterium thermosaccharolyticum W16. International Journal of Hydrogen Energy 33. 6124–6132. 22. Cao, G.-L., Ren, N., Wang, A., Lee, D., Guo, W., Liu, B., Feng, Y. & Zhao, Q. 2009. Acid hydrolysis of corn stover for biohydrogen production using Thermoanaerobacterium thermosaccharolyticum W16. International Journal of Hydrogen Energy 34. 7182–7188. 23. Huber, R., Langworthy, T.A., König, H., Thomm, M., Woese, C.R., Sleytr, U.B. & Stetter, K.O. 1986. Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Archives of Microbiology 144. 324–333. 24. Fardeau, M.L., Ollivier, B., Patel, B.K.C., Magot, M., Thomas, P., Rim- bault, A., Rocchiccioli, F. & Garcia, J.L. 1997. Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Inter- national Journal of Systematic and Evolutionary Microbiology 47. 1013– 1019. 25. Balk, M., Weijma, J. & Stams, A.J.M. 2002. Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a ther- mophilic anaerobic reactor. International Journal of Systematic and Evo- lutionary Microbiology 52. 1361–1368. 26. Schröder, C., Selig, M. & Schönheit, P. 1994. Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima – involvement of the Embden-Meyerhof pathway. Archives of Microbiology 161. 460–470. 27. Munro, S.A., Zinder, S.H. & Walker, L.P. 2009. The fermentation stoichi- ometry of Thermotoga neapolitana and influence of temperature, oxygen, and pH on hydrogen production. Biotechnology Progress 25. 1035–1042. 28. van Niel, E.W.J., Budde, M.A.W., de Haas, G.G., van der Wal, F.J., Claaas- en, P.A.M. & Stams, A.J.M. 2002. Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii. International Journal of Hydrogen Energy 27. 1391–1398 29. Yang, S.J., Kataeva, I., Wiegel, J., Yin, Y., Dam, P., Xu, Y., Westpheling, J. & Adams, M.W.W. 2010. Classification of “Anaerocellum thermophilum” strain DSM 6725 as Caldicellulosiruptor bescii sp. nov. International Jour- nal of Systematic and Evolutionary Microbiology 60. 2011–2015. 30. Kádár, Z., de Vrijek, T., van Noorden, G.E., Budde, M.A.W., Szengyel, Z. & Reczey, K. 2004. Yields from glucose, xylose, and paper sludge hydro- lysate during hydrogen production by the extreme thermophile Caldicel- lulosiruptor saccharolyticus. Applied Biochemistry and Biotechnology 113–116. 497–508. 31. de Vrije, T, Mars, A.E., Budde, M.A., Lai, M.H., Dijkema, C., de Waard, P. & Claassen, P.A.M. 2007. Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus. Applied Microbiology and Biotechnology 74. 1358–1367. 32. Willquist, K., Claassen, P.A.M. & van Niel, E.W.J. 2009. Evaluation of the influence of CO2 on hydrogen production by Caldicellulosiruptor saccharo- lyticus. International Journal of Hydrogen Energy 34. 4718–4726. 33. Arnheiður Rán Almarsdóttir, Ingólfur Bragi Gunnarsson, Alicja Taraze- wicz & Jóhann Örlygsson. 2010. Hydrogen production by moderate thermophilic Clostridium bacterium, strain AK14 from sugars and ligno- cellulosic biomass. Icelandic Agricultural Sciences 23. 61–75. 34. Collet, C., Schwitzgübel, J.P. & Peringer, P. 2003. Improvement of acetate production from lactose by growing Clostridium thermolacticum in mixed batch culture. Journal of Applied Microbiology 95. 824–831. 35. Soboh, B., Linder, D. & Hedderich, R. 2004. A multisubunit membrane- bound [NiFe] hydrogenase and an NADH-dependent Fe-only hydroge- nase in the fermenting bacterium Thermoanaerobacter tengcongensis. Microbiology 150. 2451–2461. 36. Ciranna, A., Pawar, S.S., Santala, V., Karp, M. & van Niel, E.W.J. 2014. Assessment of metabolic flux distribution in the thermophilic hydrogen producer Caloramator celer as affected by external pH and hydrogen partial pressure. Microbial Cell Factories 13. 48. 37. Zhao, C.X., O-Thong, S., Karakashev, D., Anglidaki, I., Lu, W.J., Want, H.T. 2009. High yield simultaneous hydrogen and ethanol production under extreme thermophilic (70°C) mixed culture environment. Interna- tional Journal of Hydrogen Energy 34. 5657–5665. 38. Kanai, T., Imanaka, H., Nakajima, A., Uwamori, K., Omori, Y., Fukui, T., Atomi, H. & Imanaka, T. 2005. Continuous hydrogen production by the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. Journal of Biotechnology 116. 271–282. 39. Rickenberg, F., Gotz, K., Hilterhaus, L., Liese, A. & Zeng, A.P. 2014. Strat- egies for reliable and improved large-scale production of Pyrococcus furiosus with integrated purification of hydrogenase I. Bioprocess and Biosystem Engineering 37. 2475–2482. 40. Hrönn Brynjarsdóttir, Sean Michael Scully & Jóhann Örlygsson. 2013. Production of biohydrogen from sugars and lignocellulosic biomass using Thermoanaerobacter GHL(15). International Journal of Hydrogen 38. 14467–14475.
Síða 1
Síða 2
Síða 3
Síða 4
Síða 5
Síða 6
Síða 7
Síða 8
Síða 9
Síða 10
Síða 11
Síða 12
Síða 13
Síða 14
Síða 15
Síða 16
Síða 17
Síða 18
Síða 19
Síða 20
Síða 21
Síða 22
Síða 23
Síða 24
Síða 25
Síða 26
Síða 27
Síða 28
Síða 29
Síða 30
Síða 31
Síða 32
Síða 33
Síða 34
Síða 35
Síða 36
Síða 37
Síða 38
Síða 39
Síða 40
Síða 41
Síða 42
Síða 43
Síða 44
Síða 45
Síða 46
Síða 47
Síða 48
Síða 49
Síða 50
Síða 51
Síða 52
Síða 53
Síða 54
Síða 55
Síða 56
Síða 57
Síða 58
Síða 59
Síða 60
Síða 61
Síða 62
Síða 63
Síða 64
Síða 65
Síða 66
Síða 67
Síða 68
Síða 69
Síða 70
Síða 71
Síða 72
Síða 73
Síða 74
Síða 75
Síða 76
Síða 77
Síða 78
Síða 79
Síða 80
Síða 81
Síða 82
Síða 83
Síða 84
Síða 85
Síða 86
Síða 87
Síða 88

x

Náttúrufræðingurinn

Beinleiðis leinki

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Náttúrufræðingurinn
https://timarit.is/publication/337

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.