Náttúrufræðingurinn - 2017, Blaðsíða 58
Náttúrufræðingurinn
58
Þakkir
Höfundar þakka Evu Maríu Ingvadóttir fyrir góðar ábendingar og yfir-
lestur.
Heimildir
1. Goldemberg, J. 2008. Environmental and ecological dimensions of biofu-
els. Í: Proceedings of the Conference on the Ecological Dimensions of
Biofuels. Washington. 1–17.
2. Venkata Mohan, S. & Pandey, A. 2013. Biohydrogen production: An
introduction. Bls. 1–24 í: Biohydrogen (ritstj. Pandey, A., Chang, J.-S.,
Hallenbeck, P.C. & Larroche, C.) Elsevier, Amsterdam.
3. Wang, J. & Wan, W. 2009. Factors influencing fermentative hydrogen
production: A review. International Journal of Hydrogen Energy 34.
799–811.
4. Hallenbeck, P.C., Abo-Hashesh, M. & Ghosh. D. 2012. Strategies for
improving biological hydrogen production. Bioresource Technology 111.
1–9.
5. Levin, D.B., Pitt, L. & Love, M. 2004. Biohydrogen production: prospects
and limitations to practical application. International Journal of Hydro-
gen Energy 29. 173–185.
6. Hawkes, F.R., Dinsdale, R., Hawkes, D.L. & Hussy, I. 2002. Sustainable
fermentative hydrogen production: challenges for process optimization.
International Journal of Hydrogen Energy 27. 1339–1347.
7. Sanchez, O.J. & Cardona, C.A. 2008. Trends in biotechnological produc-
tion of fuel ethanol from different feedstocks. Bioresource Technology 13.
5270–95.
8. Lee, Y.E., Jain, M.K., Lee, C.Y., Lowe, S.E. & Zeikus, J.G. 1993. Taxonomic
distinction of saccharolytic thermophilic anaerobes – description of Ther-
moanaerobacterium xylanolyticum gen-nov, sp-nov, and Thermoanaerobacte-
rium saccharolyticum gen-nov, sp-nov – reclassification of Thermoanaerobi-
um brockii, Clostridium thermosulfurogenes, and Clostridium
thermohydrosulfuricum E100-69 as Thermoanaerobacter brockii comb-nov,
Thermoanaerobacterium thermosulfurigenes comb-nov, and Thermoanaero-
bacter thermohydrosulfuricus comb-nov, respectively – and transfer of
Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus.
International Journal of Systematic Bacteriology 43. 41–51.
9. Wiegel, J. & Ljungdahl, L.G. 1981. Thermoanaerobacter ethanolicus gen.
nov., spec. nov., a new, extreme thermophilic, anaerobic bacterium.
Archives of Microbiology 128. 343–348.
10. Arnheiður Rán Almarsdóttir, Margrét Auður Sigurbjörnsdóttir & Jóhann
Örlygsson. 2012. Effect of various factors on ethanol yields from lignocel-
lulosic biomass by Thermoanaerobacterium AK17. Biotechnology and Bio-
engineering 109. 686–694.
11. Liu, S-Y., Rainey, F.A., Morgan, H.W., Mayer, F. & Wiegel, J. 1996. Ther-
moanaerobacterium aotearoense sp. nov., a slightly acidophilic anaerobic
thermophile isolated from various hot springs in New Zealand, and
emendation of the genus Thermoanaerobacterium. International Journal of
Systematic Bacteriology 46. 388–396.
12. Rainey, F.A., Donnison, A.M., Jansen, P.H., Saul, D., Rodrigo, A.,
Bergquist, P.I., Daniel, R.M., Stackebrandt, E. & Morgan, H.W. 1994.
Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov.: an
obligately anaerobic extremely thermophilic, cellulolytic bacterium
FEMS Microbiology Letters 120. 263–266.
13. Taylor, M.P., Eley, K.L., Martin, S., Tuffin, M.I., Burton, S.G. & Cowan,
D.A. 2009. Themophilic ethanologenesis: future prospects for second
generation bioethanol production. Trends in Biotechnology 27. 398–405.
14. Sanchez, R.G., Karhumaa, K., Fonseca, C., Nogue, V.S., Almeida, F.R.M.,
Larsson, C.U., Bengtsson, O., Bettinga, M., Hahn-Hagerdal, B. & Gorwa-
Grauslund, M.F. Improved xylose and arabinose utilization by an indus-
trially recombinant Saccharomyces cerevisae strain using evolutionary
engineering. Biotechnology for Biofuels 3. 1–11.
15. Stams, A.J.M. & Hansen, J.A. 1981. Fermentation of glutamate and other
compounds by Acidaminobacter hydrogenoformans gen. nov. sp. nov., an
obligate anaerobe isolated from black mud. Studies with pure cultures
and mixed cultures with sulfate-reducing and methanogenic bacteria.
Archives of Microbiology 137. 329–337.
16. Parte, A.C. 2014. LPSN – List of prokaryotic names with standing in
nomenclature. Nucleic Acid Reserach. 42. D613–D616.
17. Euzéby, J.P. 1997. List of bacterial names with standing in nomenclature:
A folder available on the internet. International Journal of Systematic and
Evolutionary Microbiology 47. 590–592.
18. Cann, I.K., Stroot, P.G., Mackie, K.R., White, B.A. & Mackie, R.I. 2001.
Characterization of two novel saccharolytic, anaerobic thermophiles,
Thermoanaerobacterium polysaccharolyticum sp. nov. and Thermoanaerobac-
terium zeae sp. nov., and emendation of the genus Thermoanaerobacterium.
International Journal of Systematic and Evolutionary Microbiology 51.
293–302.
19. Máney Sveinsdóttir, Steinar Rafn Beck Baldursson & Jóhann Örlygsson.
2009. Ethanol production from monosugars and lignocellulosic biomass
by thermophilic bacteria isolated from Icelandic hot springs. Icelandic
Agricultural Sciences 22. 45–58.
20. Kublanov, I.V., Prokofeva, M.I., Kostrikina, N.A., Kolganova, T.V., Tourova,
T.P., Wiegel, J. & Bonch-Osmolovskaya, E.A. 2007. Thermoanaerobacterium
aciditolerans sp. nov., a moderate thermoacidophile from a Kamchatka
hot spring. International Journal of Systematic and Evolutionary Micro-
biology 57. 260–264.
21. Ren, N., Cao, G., Wang, A., Lee, D., Guo, W. & Zhu, Y. 2008. Dark fermen-
tation of xylose and glucose mix using isolated Thermoanaerobacterium
thermosaccharolyticum W16. International Journal of Hydrogen Energy 33.
6124–6132.
22. Cao, G.-L., Ren, N., Wang, A., Lee, D., Guo, W., Liu, B., Feng, Y. & Zhao,
Q. 2009. Acid hydrolysis of corn stover for biohydrogen production
using Thermoanaerobacterium thermosaccharolyticum W16. International
Journal of Hydrogen Energy 34. 7182–7188.
23. Huber, R., Langworthy, T.A., König, H., Thomm, M., Woese, C.R., Sleytr,
U.B. & Stetter, K.O. 1986. Thermotoga maritima sp. nov. represents a new
genus of unique extremely thermophilic eubacteria growing up to 90°C.
Archives of Microbiology 144. 324–333.
24. Fardeau, M.L., Ollivier, B., Patel, B.K.C., Magot, M., Thomas, P., Rim-
bault, A., Rocchiccioli, F. & Garcia, J.L. 1997. Thermotoga hypogea sp. nov.,
a xylanolytic, thermophilic bacterium from an oil-producing well. Inter-
national Journal of Systematic and Evolutionary Microbiology 47. 1013–
1019.
25. Balk, M., Weijma, J. & Stams, A.J.M. 2002. Thermotoga lettingae sp. nov., a
novel thermophilic, methanol-degrading bacterium isolated from a ther-
mophilic anaerobic reactor. International Journal of Systematic and Evo-
lutionary Microbiology 52. 1361–1368.
26. Schröder, C., Selig, M. & Schönheit, P. 1994. Glucose fermentation to
acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium
Thermotoga maritima – involvement of the Embden-Meyerhof pathway.
Archives of Microbiology 161. 460–470.
27. Munro, S.A., Zinder, S.H. & Walker, L.P. 2009. The fermentation stoichi-
ometry of Thermotoga neapolitana and influence of temperature, oxygen,
and pH on hydrogen production. Biotechnology Progress 25. 1035–1042.
28. van Niel, E.W.J., Budde, M.A.W., de Haas, G.G., van der Wal, F.J., Claaas-
en, P.A.M. & Stams, A.J.M. 2002. Distinctive properties of high hydrogen
producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and
Thermotoga elfii. International Journal of Hydrogen Energy 27. 1391–1398
29. Yang, S.J., Kataeva, I., Wiegel, J., Yin, Y., Dam, P., Xu, Y., Westpheling, J. &
Adams, M.W.W. 2010. Classification of “Anaerocellum thermophilum”
strain DSM 6725 as Caldicellulosiruptor bescii sp. nov. International Jour-
nal of Systematic and Evolutionary Microbiology 60. 2011–2015.
30. Kádár, Z., de Vrijek, T., van Noorden, G.E., Budde, M.A.W., Szengyel, Z.
& Reczey, K. 2004. Yields from glucose, xylose, and paper sludge hydro-
lysate during hydrogen production by the extreme thermophile Caldicel-
lulosiruptor saccharolyticus. Applied Biochemistry and Biotechnology
113–116. 497–508.
31. de Vrije, T, Mars, A.E., Budde, M.A., Lai, M.H., Dijkema, C., de Waard, P.
& Claassen, P.A.M. 2007. Glycolytic pathway and hydrogen yield studies
of the extreme thermophile Caldicellulosiruptor saccharolyticus. Applied
Microbiology and Biotechnology 74. 1358–1367.
32. Willquist, K., Claassen, P.A.M. & van Niel, E.W.J. 2009. Evaluation of the
influence of CO2 on hydrogen production by Caldicellulosiruptor saccharo-
lyticus. International Journal of Hydrogen Energy 34. 4718–4726.
33. Arnheiður Rán Almarsdóttir, Ingólfur Bragi Gunnarsson, Alicja Taraze-
wicz & Jóhann Örlygsson. 2010. Hydrogen production by moderate
thermophilic Clostridium bacterium, strain AK14 from sugars and ligno-
cellulosic biomass. Icelandic Agricultural Sciences 23. 61–75.
34. Collet, C., Schwitzgübel, J.P. & Peringer, P. 2003. Improvement of acetate
production from lactose by growing Clostridium thermolacticum in mixed
batch culture. Journal of Applied Microbiology 95. 824–831.
35. Soboh, B., Linder, D. & Hedderich, R. 2004. A multisubunit membrane-
bound [NiFe] hydrogenase and an NADH-dependent Fe-only hydroge-
nase in the fermenting bacterium Thermoanaerobacter tengcongensis.
Microbiology 150. 2451–2461.
36. Ciranna, A., Pawar, S.S., Santala, V., Karp, M. & van Niel, E.W.J. 2014.
Assessment of metabolic flux distribution in the thermophilic hydrogen
producer Caloramator celer as affected by external pH and hydrogen
partial pressure. Microbial Cell Factories 13. 48.
37. Zhao, C.X., O-Thong, S., Karakashev, D., Anglidaki, I., Lu, W.J., Want,
H.T. 2009. High yield simultaneous hydrogen and ethanol production
under extreme thermophilic (70°C) mixed culture environment. Interna-
tional Journal of Hydrogen Energy 34. 5657–5665.
38. Kanai, T., Imanaka, H., Nakajima, A., Uwamori, K., Omori, Y., Fukui, T.,
Atomi, H. & Imanaka, T. 2005. Continuous hydrogen production by the
hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. Journal
of Biotechnology 116. 271–282.
39. Rickenberg, F., Gotz, K., Hilterhaus, L., Liese, A. & Zeng, A.P. 2014. Strat-
egies for reliable and improved large-scale production of Pyrococcus
furiosus with integrated purification of hydrogenase I. Bioprocess and
Biosystem Engineering 37. 2475–2482.
40. Hrönn Brynjarsdóttir, Sean Michael Scully & Jóhann Örlygsson. 2013.
Production of biohydrogen from sugars and lignocellulosic biomass
using Thermoanaerobacter GHL(15). International Journal of Hydrogen 38.
14467–14475.