Læknaneminn - 01.04.2016, Blaðsíða 38
Ri
trý
nt
e
fn
i
38
Heimildaskrá
1. Doudna J. Genome-editing revolution:
My whirlwind year with CRISPR. Nature
2015;528:469-71.
2. Fisher T. Centre 0246 (The Francis Crick
Institute at Mill Hill) – application for
research licence renewal for research project
R0162. In: authority Hfe, ed. 14. January
20162016.
3. Ishino Y, Shinagawa H, Makino K, Amemura
M, Nakata A. Nucleotide sequence of the iap
gene, responsible for alkaline phosphatase
isozyme conversion in Escherichia coli, and
identification of the gene product. Journal of
Bacteriology 1987;169:5429-33.
4. Mojica FJ, Ferrer C, Juez G, Rodriguez-
Valera F. Long stretches of short tandem
repeats are present in the largest replicons
of the Archaea Haloferax mediterranei and
Haloferax volcanii and could be involved in
replicon partitioning. Molecular microbiology
1995;17:85-93.
5. Mojica FJ, Diez-Villasenor C, Soria E,
Juez G. Biological significance of a family
of regularly spaced repeats in the genomes
of Archaea, Bacteria and mitochondria.
Molecular microbiology 2000;36:244-6.
6. Jansen R, Embden JD, Gaastra W, Schouls
LM. Identification of genes that are
associated with DNA repeats in prokaryotes.
Molecular microbiology 2002;43:1565-75.
7. Tang TH, Bachellerie JP, Rozhdestvensky T,
et al. Identification of 86 candidates for small
non-messenger RNAs from the archaeon
Archaeoglobus fulgidus. Proceedings of the
National Academy of Sciences of the United
States of America 2002;99:7536-41.
8. Bolotin A, Quinquis B, Sorokin A, Ehrlich
SD. Clustered regularly interspaced short
palindrome repeats (CRISPRs) have spacers
of extrachromosomal origin. Microbiology
(Reading, England) 2005;151:2551-61.
9. Mojica FJ, Diez-Villasenor C, Garcia-
Martinez J, Soria E. Intervening sequences
of regularly spaced prokaryotic repeats derive
from foreign genetic elements. Journal of
molecular evolution 2005;60:174-82.
10. Barrangou R, Fremaux C, Deveau H, et al.
CRISPR provides acquired resistance against
viruses in prokaryotes. Science (New York,
NY) 2007;315:1709-12.
11. Deltcheva E, Chylinski K, Sharma CM, et al.
CRISPR RNA maturation by trans-encoded
small RNA and host factor RNase III. Nature
2011;471:602-7.
12. Nunez JK, Lee AS, Engelman A, Doudna JA.
Integrase-mediated spacer acquisition during
CRISPR-Cas adaptive immunity. Nature
2015;519:193-8.
13. Jinek M, Chylinski K, Fonfara I, Hauer M,
Doudna JA, Charpentier E. A programmable
dual-RNA-guided DNA endonuclease in
adaptive bacterial immunity. Science (New
York, NY) 2012;337:816-21.
14. Jinek M, East A, Cheng A, Lin S, Ma E,
Doudna J. RNA-programmed genome
editing in human cells. eLife 2013;2:e00471.
15. Shen B, Zhang W, Zhang J, et al. Efficient
genome modification by CRISPR-Cas9
nickase with minimal off-target effects.
Nature methods 2014;11:399-402.
16. Cong L, Ran FA, Cox D, et al. Multiplex
Genome Engineering Using CRISPR/
Cas Systems. Science (New York, NY)
2013;339:819-23.
17. Guirouilh-Barbat J, Huck S, Bertrand
P, et al. Impact of the KU80 pathway on
NHEJ-induced genome rearrangements
in mammalian cells. Molecular cell
2004;14:611-23.
18. Weterings E, Chen DJ. The endless tale of
non-homologous end-joining. Cell research
2008;18:114-24.
19. Fu Y, Foden JA, Khayter C, et al. High-
frequency off-target mutagenesis induced
by CRISPR-Cas nucleases in human cells.
Nature biotechnology 2013;31:822-6.
20. Veres A, Gosis BS, Ding Q, et al. Low
incidence of off-target mutations in individual
CRISPR-Cas9 and TALEN targeted human
stem cell clones detected by whole-genome
sequencing. Cell stem cell 2014;15:27-30.
21. Kleinstiver BP, Pattanayak V, Prew MS, et al.
High-fidelity CRISPR–Cas9 nucleases with
no detectable genome-wide off-target effects.
Nature 2016;529:490-5.
22. Baltimore D, Berg P, Botchan M, et al.
Biotechnology. A prudent path forward for
genomic engineering and germline gene
modification. Science (New York, NY)
2015;348:36-8.
23. Niu Y, Shen B, Cui Y, et al. Generation of
gene-modified cynomolgus monkey via Cas9/
RNA-mediated gene targeting in one-cell
embryos. Cell 2014;156:836-43.
24. Lög um tæknifrjóvgun og notkun kynfrumna
og fósturvísa manna til stofnfrumurannsókna.
In: Alþingi, ed.: Skrifstofa Alþingis; 2008.
25. Liang P, Xu Y, Zhang X, et al. CRISPR/
Cas9-mediated gene editing in human
tripronuclear zygotes. Protein & Cell
2015;6:363-72.
26. Dahdouh EM, Balayla J, Audibert F, et al.
Technical Update: Preimplantation Genetic
Diagnosis and Screening. Journal of obstetrics
and gynaecology Canada : JOGC = Journal
d’obstetrique et gynecologie du Canada :
JOGC 2015;37:451-63.
27. Brian R. Walker NRC, Stuart H. Ralston,
Ian D. Penman. Davidson’s Principles and
Practice of Medicine: Elsevier; 2014.
28. Kaiser J. CRISPR helps heal mice with
muscular dystrophy. Science (New York, NY)
2015.
29. Kennedy EM, Kornepati AV, Cullen
BR. Targeting hepatitis B virus cccDNA
using CRISPR/Cas9. Antiviral research
2015;123:188-92.
30. Han AP. UMass Scientists Lead Effort to
Excise Latent HIV With CRISPR/Cas9.
Genomeweb 2015.
31. Jing W, Zhang X, Sun W, Hou X, Yao
Z, Zhu Y. CRISPR/CAS9-Mediated
Genome Editing of miRNA-155 Inhibits
Proinflammatory Cytokine Production
by RAW264.7 Cells. BioMed research
international 2015;2015:326042.
32. Nafissi N, Foldvari M. Neuroprotective
therapies in glaucoma: II. Genetic
nanotechnology tools. Frontiers in
neuroscience 2015;9:355.
33. Wold WSM, Toth K. Adenovirus Vectors for
Gene Therapy, Vaccination and Cancer Gene
Therapy. Current gene therapy 2013;13:421-
33.
Glæsibæ | Álfheimum 74 | 104 Reykjavík | Þjónusta á landsbyggðinni | Sími 568 6880
Heyrnarmælingar
Fagleg ráðgjöf - Vönduð heyrnartæki