Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1984, Qupperneq 45

Jökull - 01.12.1984, Qupperneq 45
ture, and its concentration is used as a geoth- ermometer (see Ellis 1979, Fournier 1981, Arnórsson et al. 1983). When water is close to magma, self-sealing due to precipitation of silica puts an upper limit of 330 to 350 °C to the temperature of the fluid (Fournier 1983). With increasing temperature, quartz has a solubility maximum at constant pressure. When this max- imum is reached (at about 340 °C) precipitation of quartz deep in hydrothermal systems may decrease the permeability to such an extent that convecting meteoric water no longer can attain temperatures higher than that given by the quartz solubility maximum. Known reservoir tempera- tures in Icelandic high- temperature geothermal areas range from 240 to 350 °C. Table 3 shows chemical concentrations of well discharges for five liquid dominated geothermal areas in Ice- land. The first three areas have boiling reservoirs with dilute fluid of meteoric origin. The table shows concentrations for both total discharge and deep water. The two other areas have saline reservoir water. The table shows the deep water concentrations. Further, calculated concentra- tions are given for water boiled at 235 °C for all the areas. Grímsvötn is a high-temperature geothermal system and the reservoir temperature is presumably above 300 °C. The fluid is dilute and probably liquid dominated. Boiling would occur at 235-250 °C on the lake floor, depending on the height of the lake level. The concentration of silica in the deep reser- voir water may be Cgw = 700 mg/kg. If fluid of that concentration were discharged into Gríms- vötn, we would estimate the geothermal mass fraction k=0.13 from equation (8). According to the calculations, illustrated in Fig. 9, the mass and energy balances would require the steam mass fraction to be x= 0.45 when the fluid enters the lake. During upflow, however, deep water as well as condensed steam would equilibrate with the formation rocks at or above 235 °C (given a few hours or days, see Rimstidt and Barnes 1980). Hence, we estimate the silica concentration Cgw= 400-600 mg/kg in the water entering the Gríms- vötn lake (see Table 3 for comparison). Further, we estimate the geothermal mass fraction k= 0.14-0.16 and the energy balance requires steam mass fraction x=0.20-0.35 for the fluid dis- charged to the lake; the mass flow of geothermal water Mgw= 0.60-0.83T011 kg/yr and Mgv= 0.24-0.34T011 kg/yr of steam. The mass of ice melted in the lake is estimated to be M;= 4.0-4.2T011 kg/yr. Furthermore, we expect the total thermal power of the Grímsvötn system to be 4700-4900 MW, of which 2100-3000 MW are transported by steam and 1900-2600 MW by water (see Fig. 9). Calculations similar to those for silica are diffi- cult for carbonate. A plausible estimate is not available for the carbonate concentration of the geothermal component as it varies from one high- temperature area (>300 °C) to another (see Table 3). But if we assume k=0.15 and if the meltwater component contains 20 mg/kg carbon- ate (as C02), (and Cr=Ca=Q), we can calculate the concentration for the geothermal component that would be consistent with the measured con- centrations in the jökulhlaups. The calculations show variations from C=2000 to 4500 mg/kg (as C02) for the geothermal component. This is high but not unlikely in an active volcanic area. Direct interaction with magma has been observed in the geothermal systems in Krafla and Námafjall (Björnsson et al. 1979). The concentration of C02 in geothermal fluids in the Krafla area increased considerably during the recent volcanic events (Armannsson et al. 1982). The concentrations of fluoride and chloride may well be consistent with a geothermal mass fraction k=0.15 (see Table 3). VOLCANIC ACTIVITY DEDUCED FROM WATER CHEMISTRY The high concentrations of sulphate and iron (as well as carbonate) during the jökulhlaup in December 1983 suggest direct contact between magma and geothermal fluid. Sulphate (S04) in the Grímsvötn lake origin- ates from oxidation of H2S as well as from the S04 in the geothermal discharge. The contribu- tion from the meltwater is small as is evidenced by the glacier rivers when not influenced by jökulhlaups (Fig. 8). The concentration of sul- phate will be influenced by volcanic activity. We may even expect a sharper increase in sulphate than carbonate shortly after volcanic activity because H2S (and S02) is more soluble in water than C02. This may explain the very high con- centration of sulphate in the jökulhlaup of December 1983 as compared to those of 1972, 1976 and 1982. The reported concentration of sulfate in the jökulhlaup in 1965 was also very high (Sigvaldason 1965). JÖKULL 34. ÁR 43
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160
Qupperneq 161
Qupperneq 162
Qupperneq 163
Qupperneq 164
Qupperneq 165
Qupperneq 166
Qupperneq 167
Qupperneq 168
Qupperneq 169
Qupperneq 170
Qupperneq 171
Qupperneq 172
Qupperneq 173
Qupperneq 174
Qupperneq 175
Qupperneq 176
Qupperneq 177
Qupperneq 178
Qupperneq 179
Qupperneq 180
Qupperneq 181
Qupperneq 182
Qupperneq 183
Qupperneq 184
Qupperneq 185
Qupperneq 186
Qupperneq 187
Qupperneq 188
Qupperneq 189
Qupperneq 190
Qupperneq 191
Qupperneq 192
Qupperneq 193
Qupperneq 194
Qupperneq 195
Qupperneq 196

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.