Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.12.1984, Qupperneq 54

Jökull - 01.12.1984, Qupperneq 54
volcanic regions is therefore only natural, when considering how far from eruption sites visible tephra layers can be traced. For example, the “Greetings from Iceland” travelled a long way, Thorarinsson (1981a). The many tephra layers encountered in peatbogs, soils or sea sediments around the globe often serve as useful reference horizons and contribute evidence in describing the character of the individual eruptions. The tephra studies of Sigurður Thorarinsson are well known as well as the many applications of such studies (see e. g. Thorarinsson (1981 b). A disadvantage of extending the studies to the polar ice sheets is the narrowing of the applica- tions, because the ice sheets “per se” offer no possibilities for archaeological studies, or soil erosion studies etc. unless some adventurous eskimo or viking did get lost on the Greenland Ice Sheet. What kind of volcanic material do we find in the Greenland Ice Sheet? It is strong acids associ- ated with the acid gaseous products of volcanic eruptions and not fine grained tephra (Hammer 1977). This does not mean that fine tephra is absent in the ice, but it is not abundant and therefore extremely difficult and time consuming to search for it in a systematic way. Why is this so? TEPHRA DEPOSITION ON ICE SHEETS During the last decade the subject of long range transported fine tephra deposition on the Greenland and Antarctic ice sheets has been controversial. Even though volcanic impurities in the Greenland Ice Sheet are mainly water soluble strong electrolytes, especially strong acids (Ham- mer et al. 1980 a), I will discuss the tephra deposi- tion on the two large ice sheets, because it may be relevant for future studies as well as throw some light on the volcanic production and the long-range transport of the most fine grained material. In this paper I will consider fine tephra to consist of solid particles less than approx. 2-5 |im in diameter. This definition has the advan- tage, that it coincides with the upper limit of particle sizes in the Greenland Ice Sheet; which can be defined as the size range, where the mass per unit of particle radius drops drastically. In other words the bulk of the particle mass consists of particles having radii less than 2-5|xm. Such a definition also agrees, almost “a priori”, with the upper limit of the Junge particle distribu- tion (see e. g. Junge 1963, p. 118) in the mid-tro- pospheric air - at least over the latitude zone in question. A violent volcanic eruption in e. g. Iceland will of course produce a lot of larger particle sizes, but one should keep in mind the strong influence of the weather system, which acts to keep the long range transported tephra particles within the above stated size range. The above definition has close ties to what is observed in the ice. How much fine grained tephra is actually pro- duced in eruptions? Very little is known about it, as this fine tephra is almost by definition so fine, that it cannot be traced in peat bogs etc. (at least not without laborious work and much difficulty). — In fact the clean ice sheets of Greenland and Antarctica are the natural places to search for it! No visible tephra layers have been observed in the Greenland ice cores (one visible layer, consis- ting of atmospherically transported particles, was observed in the Dye 3 core, see later). Some 10— 100 mg of ash or continental dust per kg of ice is needed in order to give a coloring of the ice core; somewhat depending on the size distribution of the particles. More quantitative techniques have been used in order to measure the micro-particle concentrations in the ice. Even, when using Coul- ter and light scattering technique, (Hammer 1977) no ice layers of higher than average particle concentration could be safely reconciled with vol- canic eruptions. Using a single particle counting laser technique (counting particles down to 0.05pm over the ice covering acid fallout from the 1815 Tambora eruption and the 1783 Lakagígar eruption), did not reveal any increase in particle concentration over the relevant years (Hammer, unpublished). The average dust concentration over the Holocene ice is some 50—100 pg/kg and it seems surprising, that no eruptions in North America or Iceland contributed significantly to the annual particle concentrations in e. g. the Créte and the Dye 3 core. (The Créte core is from Central Greenland and reaches 1400 years back in time, while the Dye 3 core in South Greenland covers more than 50,000 continuous years). In Antarctica tephra layers have been observed e. g. in the Byrd core (Gow and Williamson 52 JÖKULL 34. ÁR
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160
Qupperneq 161
Qupperneq 162
Qupperneq 163
Qupperneq 164
Qupperneq 165
Qupperneq 166
Qupperneq 167
Qupperneq 168
Qupperneq 169
Qupperneq 170
Qupperneq 171
Qupperneq 172
Qupperneq 173
Qupperneq 174
Qupperneq 175
Qupperneq 176
Qupperneq 177
Qupperneq 178
Qupperneq 179
Qupperneq 180
Qupperneq 181
Qupperneq 182
Qupperneq 183
Qupperneq 184
Qupperneq 185
Qupperneq 186
Qupperneq 187
Qupperneq 188
Qupperneq 189
Qupperneq 190
Qupperneq 191
Qupperneq 192
Qupperneq 193
Qupperneq 194
Qupperneq 195
Qupperneq 196

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.