Náttúrufræðingurinn

Ukioqatigiit

Náttúrufræðingurinn - 1981, Qupperneq 45

Náttúrufræðingurinn - 1981, Qupperneq 45
stratigraphically controlled. In high temperature areas the volcanic and tectonic risk may be of concern, and hence it is important to study the volcanic history of the area and analyse the fault pattern with regard to identifying faults showing the most recent movement. Geothermal gradients across Iceland vary from about 50°C/km for the oldest rocks in West and East Iceland to about 100°C/km inferred for the axial rift zones (Fig. 3). Higher gradients are due to movement of hot water in the bedrock. Isothermal sur- faces, inferred from secondary minerali- zation in the eroded lava pile, indicate thermal gradients of about 70°C/km for the peak heat flow before erosion set in (Fig. 5). The permeability of the bedrock is reduced immensely as a result of zeolitization and alteration (Fig. 4). The consequence is that primary permeability is reduced to almost zero and secondary permeability becomes prevailing. The secondary permeability relates (a) to fractures, faults and dykes that formed under extension within axial rift zones during growth of the lava pile and (b) to fractures and faults that formed later, sometimes under different stress conditions, outside the zones of crustal growth. A case is made for secondary porosity due to dis- solution from the deeper parts of geothermal systems. The high temperature areas are evident from the occurrence of steaming ground, fumaroles and mud pools. They are localized within active geological structures such as central volcanoes or the most active parts of fissure swarms. The central vol- canoes have acid rocks associated with them and some have calderas. Two high tem- perature areas lie on the border of the axial rift zone. They lack active volcanism but faulting is active (Hveragerdi and Geysir). The size of the high temperature fields varies between 1 km- and over 100 km'- (Table 1). Effluent seepage of the high temperature fluid may emerge as C02-springs on their outskirts, as warm ground water in open fis- sures or as HgS-contaminated subglacial streams. The roots of eroded extinct high temperature hydrothermal systems reveal cupolas of high temperature alteration cen- tered on intrusive complexes or sheet and dyke swarms. The intrusives may attain up to 50% of the total rock involved in the deepest parts of the exposed hydrothermal aureoles. High temperature areas are situ- ated in zones of active faulting which oc- curs intermittently at intervals of tens of years (western part of Reykjanes Peninsula) and up to hundreds of years (e.g. northern volcanic zone). New fractures may allow upflow of fluid near boiling temperature. If boiling occurs, hydrothermal activity signi- ficantly increases, and hydrothermal ex- plosion craters, which are common in many high temperature fields, may form. Most of the high temperature areas have been af- fected by volcanism during postglacial time, however, to a varying degree as regards type of eruption, frequency of eruptions and distribution of eruptions with time. Assess- ment of volcanic risk is an important aspect in the study of high temperature areas. Even though constructions may be sited relatively safely, gas pulses (CO., and SO,2) may cause severe problems in utilizing the geothermal system. The low temperature geothermal activity is less clearly defined as individual areas. There may be, however, over 250 separate areas with over 600 main hot springs. The total natural flow, excluding springs of less than 20°C, amounts to about 1800 1/s. Utilization and successful prospecting for hot water has hitherto been more or less limited to known hot spring areas. By drilling and pumping the natural flow has been increased 10—20 times without signs of overexploitation. On the basis of geological and structural studies several dif- ferent types of low-temperature areas have been identified. (a) Dykes syngenetic with the growth of the lava pile are probably the most common type of aquifer. These pre- dominate throughout the Tertiary plateau basalt areas (Fig. 10). Sometimes the dykes are associated with faults of similar strike and age (Fig. 12). (b) Geologically young faults or fault zones, cutting at an angle across older structures syngenetic with the growth of the lava pile (Fig. 11). (c) Zones of 187
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160
Qupperneq 161
Qupperneq 162
Qupperneq 163
Qupperneq 164
Qupperneq 165
Qupperneq 166
Qupperneq 167
Qupperneq 168
Qupperneq 169
Qupperneq 170
Qupperneq 171
Qupperneq 172
Qupperneq 173
Qupperneq 174
Qupperneq 175
Qupperneq 176
Qupperneq 177
Qupperneq 178
Qupperneq 179
Qupperneq 180
Qupperneq 181
Qupperneq 182
Qupperneq 183
Qupperneq 184
Qupperneq 185
Qupperneq 186
Qupperneq 187
Qupperneq 188
Qupperneq 189
Qupperneq 190
Qupperneq 191
Qupperneq 192
Qupperneq 193
Qupperneq 194
Qupperneq 195
Qupperneq 196
Qupperneq 197
Qupperneq 198
Qupperneq 199
Qupperneq 200
Qupperneq 201
Qupperneq 202
Qupperneq 203
Qupperneq 204
Qupperneq 205
Qupperneq 206
Qupperneq 207
Qupperneq 208
Qupperneq 209
Qupperneq 210
Qupperneq 211
Qupperneq 212
Qupperneq 213
Qupperneq 214
Qupperneq 215
Qupperneq 216
Qupperneq 217
Qupperneq 218
Qupperneq 219
Qupperneq 220

x

Náttúrufræðingurinn

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Náttúrufræðingurinn
https://timarit.is/publication/337

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.