Náttúrufræðingurinn

Volume

Náttúrufræðingurinn - 2019, Page 69

Náttúrufræðingurinn - 2019, Page 69
Tímarit Hins íslenska náttúrufræðifélags 141 staðir hafa sérstöðu á heimsvísu, vegna virkni foksins og eðlis fokefnanna. Það er mikilvægt að fylgjast vel með þróun þessara svæða, meðal annars í tengslum við hörfun jökla vegna hlýnunar jarðar og breytinga í kjölfar jökulhlaupa. Miklu skiptir að efla rannsóknir á uppfoki á ryki og áhrifum þess á vistkerfi, loftslag og lýðheilsu, svo dæmi séu tekin. Þar sem auðnir landsins hafa stækkað verulega á síðustu þúsöld hefur endurfok efna sem falla á ógróið land aukist mjög. Það hefur margvísleg nei- kvæð áhrif, bæði vegna efna frá megin- uppsprettum ryks og vegna öskufalls, meðal annars á lýðheilsu. Það er full ástæða til að huga betur að vistkerfum í nágrenni virkra eldstöðva á borð við Heklu og Kötlu út frá þessu sjónar- miði.22,75 Öflugir fræberandi birkiskógar ættu að vera markmið vistheimtar á þessum svæðum, því slíkt gróðurfar þolir áföllin vel og birkiskógar dreif- ast ört út aftur eftir náttúruleg áföll, sé fræframboð mikið og sauðfjárbeit tak- mörkuð.76,77 Einnig þarf að draga sem verða má úr sléttu yfirborði, svo sem úr steypu og malbiki, í þéttbýli nærri umferðarmannvirkjum og auka tré- og runnagróður sem bindur rykefni og dregur úr loftmengun. ENGLISH SUMMARY icelaNdic saNdy deserts aNd aeOliaN PrOcesses – ii. dust The paper is one of two in this jour- nal reviewing the nature of sandy des- erts and aeolian processes in Iceland with this one primarily focused on dust. Iceland rates among the most produc- tive dust areas on Earth with annual dust production of the order of >10 mil- lion tons per year. The frequency is >135 dust storms per annum, and most likely much higher than that. Dust deposition is a major factor shaping all ecosystems as the dust is the primary component of the soil parent materials together with volcanic ash deposited during erup- tions. The sources of dust have changed over the last millennia from being pri- marily soil materials due to man-in- duced ecosystem collapse to being primarily more confined dust desert areas of continuous silty sediment accu- mulation. These areas are floodplains in front of glaciers, areas along glacial rivers subjected to major flood events, glacial lakes with fluctuating water lev- els, and shorelines close to the outlet of major glacial rivers. These areas include Dyngjusandur, Mælifellssandur, Haga- vatnsaurar, Mýrdalssandur, areas at both sites of the outlets of the Markar- fljót and Kúðafljót rivers, and Skeiðarár- sandur. Dyngjusandur, north of Vatna- jökull glacier, rates among the most pro- ductive dust sources on Earth and the dust is blown 100’s and even 1000’s of km into the Arctic areas. Dust pollution often exceeds health limits in Iceland, even at great distances from the major dust sources. The dust often has a high component of very fine particles (PM1) and dust grains of that size are often elongated with sharp edges which is also negative from the health aspect. The basaltic composition of the dust leads to rapid soil weathering rates that enhances the fertility of ecosystems in Iceland. The high iron content may also enhance fertility of oceans around Ice- land. The dust has influence on atmo- spheric conditions such as formation of clouds and albedo. Dust increases rates of snow and glacial melt and may enhance climate warming. 18. Ólafur Arnalds, Pavla Dagsson-Waldhauserová & Haraldur Ólafsson 2016. The Icelandic volcanic aeolian environment: Processes and impacts – A review. Aeolian Research 20. 176–195. 19. Gunnhildur Ingibjörg Georgsdóttir 2012. Sandfok á Íslandi 2002 til 2012: Tíðni, upptakasvæði og veðuraðstæður. MS-ritgerð við jarðvísindadeild Háskóla Íslands, Reykjavík. 20. Þröstur Þorsteinsson, Guðrún Gísladóttir, Bullard J. & McTainsh G.H. 2011. Dust storm contributions to airborne particulate matter in Reykjavík, Iceland. Atmospheric Environment 45. 5924–5933. 21. Leadbetter, S.J., Hort, M.C., von Löwis S., Weber, K. & Witham, C.S. 2012. Modeling the resuspension of ash deposited during the eruption of Eyja- fjallajökull in spring 2010. Journal of Geophysical Research 117(D20). doi.org /10.1029/2011JD016802 22. Guðmundur Halldórsson, Anna María Ágústsdóttir, Ása L. Aradóttir, Ólafur Arnalds, Nilsson, C., Hreinn Óskarsson, Mortensen, L., Pagneux, E., Pilli- Sihvola, K., Raulund-Rasmussen, K., Kristín Svavarsdóttir & Tolvanen, A. 2017. Ecosystem restoration for mitigation of natural disasters. TemaNord 2017. 546. 23. Bistrow, C.S. & Moller, T.H. 2018. Dust production by abrasion of aeolian sands: Analogue for Martian Dust. Journal of Geophysical Research – Planets. doi:10.1029/2018JE005682 24. Pavla Dagsson-Waldhauserová, Ólafur Arnalds & Haraldur Ólafsson 2014. Long-term variability of dust events in Iceland. Atmospheric Chemistry and Physics 14. 13411–13422. 25. Bullard, J.E. 2013. Contemporary glacigenic inputs to the dust cycle. Earth Surface Processes and Landforms 38. 71–89. 26. Esther Hlíðar Jensen, Davíð Egilsson, Svava Björk Þorláksdóttir, Snorri Zóphóníasson & Gunnar Sigurðsson 2017. Mælingar á aurburði og rennsli í Jökulkvísl árin 2015 og 2016. Landsvirkjun og Orkusalan (LV –2017–126, ORK–1702), Reykjavík. 27. Pavla Dagsson-Waldhauserová, Ólafur Arnalds, Haraldur Ólafsson, Skrabalova, L., Guðmunda María Sigurðardóttir, Branis, M., Hladil, J., Skala, R., Havratil, T., Chadimova, L., von Lowis of Menar, S., Þröstur Þorsteinsson, Carlsen, H.K. & Ingibjörg Jónsdóttir 2014. Physical properties of suspended dust during moist and low wind conditions in Iceland. Icelandic Agricultural Sciences 27. 25–39. 28. Pavla Dagsson-Waldhauserová, Ólafur Arnalds & Haraldur Ólafsson 2013. Long-term frequency and characteristics of dust storm events in Northeast Iceland (1949–2011). Atmospheric Environment 77. 117–127 29. Pavla Dagsson-Waldhauserová, Ólafur Arnalds & Haraldur Ólafsson 2017. Long term dust aerosol production from natural sources in Iceland. Journal of the Air & Waste Management Association 67. 173–181. 30. Moroni B., Ólafur Arnalds, Pavla Dagsson Waldhauserová, Crocchianti, S., Vivani R. & Cappelletti, D. 2018. Mineralogical and chemical records of Icelandic dust sources upon Ny-Ålesund (Svalbard Islands). Frontiers in Earth Science 2018. 187–219, doi:10.3389/feart.2018.00187 31. Þröstur Þorsteinsson, Þorsteinn Jóhannsson, Stohl A. & Kristiansen, N. 2012. High levels of particulate matter in Iceland due to direct ash emissions by the Eyjafjallajökull eruption and resuspension of deposited ash. Journal of Geophysical Research. 117 (B00C05). 32. Pavla Dagsson-Waldhauserová, Agnes Ösp Magnúsdóttir, Haraldur Ólafs- son & Ólafur Arnalds 2016. The spatial variation of dust particulate matter concentrations during two Icelandic dust storms in 2015. Atmosphere 7(6), 3–18. doi:10.3390/atmos7060077 7. 77 33. Lea María Lemarquis 2018. Frequency and origin of dust events in Fljótshlíð, South Iceland, in 2017. BS-ritgerð við jarðvísindadeild Háskóla Íslands, Reykjavík. 34. Esther Hlíðar Jensen, Davíð Egilson, Emmanuel Pagneux, Bogi B. Björnsson, Snorri Zóphóníasson, Snorri Páll Snorrason, Ingibjörg Jónsdóttir, Ragnar H.

x

Náttúrufræðingurinn

Direct Links

If you want to link to this newspaper/magazine, please use these links:

Link to this newspaper/magazine: Náttúrufræðingurinn
https://timarit.is/publication/337

Link to this issue:

Link to this page:

Link to this article:

Please do not link directly to images or PDFs on Timarit.is as such URLs may change without warning. Please use the URLs provided above for linking to the website.