Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.01.2014, Qupperneq 16

Jökull - 01.01.2014, Qupperneq 16
W. Menke and H. Menke application of computers to seismology allowed au- tomated picking, but while this facility sped up the location process, enabling near real-time monitoring, it did little to improve the accuracy of locations. The accuracy of a pick, whether determined by a human being or a machine algorithm, is limited by the ability of either to pick the onset of a seismic wave on a noisy record. Instead, it was the ability to compute differen- tial arrival times (the time difference between two ar- rivals) using cross-correlation that provided the leap in data quality that underpinned the improvement in accuracy. Cross-correlations could routinely be com- puted from digital data, something that was not pos- sible with the older analogue recordings. Early suc- cesses with the new approach (Rögnvaldsson, 1994; Got et al., 1994; Slunga et al., 1995; Rögnvaldsson et al., 1998; Rubin et al., 1999; Waldhauser et al., 1999) revealed a richness in the pattern of seismicity that hitherto fore had been missed. It drove further im- provements in the method (e.g. the Double Difference Method of Waldhauser (2001)) and its extension to re- lated problems (e.g. the joint location – tomographic imaging method of Zhang and Thurber (2003)). The cross-correlation process exploits the whole waveform, not just its onset, and so achieves an ac- curacy in aligning two time series that far exceeds what can be achieved by differencing two picks (al- beit without determining the absolute timing of ei- ther), at least when the two waveforms have very sim- ilar shapes. Furthermore, the error decreases indefi- nitely with the length of the waveform and (somewhat surprisingly) can be smaller than the digital sampling interval of the time series (Cespedes et al., 1995). Although the high accuracy of the double difference method arises from several sources, the most impor- tant is the precision of the data (Menke and Schaff, 2004). Simply put, differential travel times deter- mined through cross-correlation have at least an or- der of magnitude smaller error than traditional arrival times determined through onset picking. The lower noise differential times enable more accurate locations. In this paper, we explore the statistics of differential travel time measurements and demonstrate that a factor of about two to four addi- tional error reduction in timing can be achieved when the relative timing of a large group of time series (as contrasted to a single pair of time series) is determined simultaneously. OUT-MEMBER AVERAGING TO REDUCE THE VARIANCE OF DIFFERENTIAL DELAY TIMES We consider the commonly-encountered signal corre- lation problem of aligning time series that differ only by a delay plus additive noise. The N time series u(i) are all of length M and sampling interval ∆t and consist of a deterministic part u(i)0 and additive noise δu(i): u(i) = u (i) 0 + δu (i) (1) All the deterministic parts have the same shape u0, up to a time shift ti. The signal to noise ratio (s.n.r.) r is given by r−2 = (δuT δu)/(uTu). The noise δu(i) in one time series is assumed to be uncorrelated with the noise δu(j) in another, though both may have non- trivial autocorrelation functions. The objective is to determine the differential time delay τij = ti − tj be- tween all pairs of time series. We start with the rule that a good estimate of τij is the one that maximizes the cross-correlation cij : and cestij = maxtu (i) ? u(j) and τestij = argmaxtu (i) ? u(j) (2) Here ? signifies cross-correlation. As is customary, we normalize each u(i) by the square root of its en- ergy, so that |cestij | ≤ 1. Since it depends upon noisy time series, the estimated delay τestij differs from the true delay, τestij = τ true ij + δτij by an error δτij with variance σ2. Two delays, τestik and τ est kj that share one (and only one) index k are correlated, with co- variance, say, ασ2 (with 0≤ α ≤ 1) since they both depend upon the time series u(k). Two delays that do not share a common index are uncorrelated. As we will discuss below, the quantities σ2 and α depend upon u0 and the statistics of δu. We now consider whether we can improve upon the estimate τestij . We have available a total of N − 2 16 JÖKULL No. 64, 2014
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.