Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.01.2014, Qupperneq 73

Jökull - 01.01.2014, Qupperneq 73
Earthquake Sequence 1973–1996 in Bárðarbunga volcano mal σ1 for reactivation would be in a plane perpendic- ular to the fault plane with dip 50–57◦. For the same dipping of a weak fault, the dip range of σ1 would be 38–46◦. Today most authors accept Anderson’s derivation (1936) that cone sheets are mode I fractures formed by upward pressure of magma. He showed that they propagate in the direction of σ1 and open up in direc- tion of σ3. Sheets in the dip range 38–46◦ or 50–57◦ would therefore signify a paleo-stress field that was optimal to reactivate near vertical inward dipping (80– 85◦) weak or normal strength faults, respectively, ac- cording to the relation of Sibson (1985). Cone sheets are commonly observed within eroded central volca- noes in Iceland and are closely related to calderas. They have a wide range of dip. However, it seems common among all observations carried out, that peaks in distributions of cone sheet dips are within the range 25–45◦ (Annells, 1968; Sigurdsson, 1970; Johannesson, 1975; Franzson, 1978; Gudmundsson, 1998a; 2002; Siler and Karson, 2009; Burchardt et al., 2011). Most authors also find steeper dipping sheets within the range ∼60–90◦ (Annells, 1968; Johannes- son, 1975; Franzson, 1978; Gudmundsson, 1998a, 2002; Siler and Karson, 2009; Burchardt et al., 2011). The steep dipping sheets tend to be less numerous than the shallow ones, with one or two exceptions (Gudmundsson, 1998a; Franzson, 1978). Gudmunds- son (1998b) has modelled the formation of normal fault calderas numerically. He predicts that during the time of doming of a magma chamber, σ1 has inter- mediate dips (∼30–45◦) in the vicinity of the lower (deeper) half of the caldera fault, but in the upper half steepening (∼40–75◦) is indicated. Distribution of cone sheets in Iceland therefore in- dicates paleo-stress field within extinct central volca- noes that may have been commonly favourably ori- ented to reactivate weak steeply dipping (80–85◦) caldera faults, during periods of cone sheets forma- tions. The assumed large ratio of slip to fault length of mature calderas in the world, and observations of rapid subsidence of caldera floors (e.g. Hartley and Thordarson, 2012; Sigmundsson et al., 2015), sug- gests that caldera faults are commonly weak faults. As cone sheets dips in the range ∼50–60◦ are by no means uncommon in Iceland, the requirement of weak faults may not be necessary in order to reacti- vate steeply dipping normal caldera faults during pe- riods of cone sheet formations. However, when the least effective principal stress is tensile, reactivation of regular strength high angle normal faults becomes easier (Sibson, 1985). This should be the situation ex- pected in plate spreading environment like Iceland. Studies on calderas in Iceland indicate a major caldera ring fault, with relatively regular circular or oval geometry, but the caldera floor has often con- siderable faulting and flexing (H. Jóhannesson, pers. comm., Jan. 2015). However, some of the central vol- canoes have more complex structure, e.g. couple of calderas within their domain (Jóhannesson and Sæ- mundsson, 2009). Therefore, Icelandic calderas are usually neither a pure end member piston collapse nor a chaotic piecemeal collapse on random faults, but comprise probably components of both. It is thought that caldera formations in Iceland take thousands of years to develop (Fridleifsson, 1973; Jóhannesson, 1975; Torfason, 1979; Franzson, 1978; Fridleifsson, 1983). However, there are observations, which in- dicate that incremental caldera collapse can be rapid (Hartley and Thordarson, 2012; Sigmundsson, 2015), the final adjustment of an incremental collapse taking half a century (Hartley and Thordarson, 2012). Dynamics of the 1973–1996 Bárðarbunga earth- quake sequence If the caldera fault dip towards the centre of Bárð- arbunga, which is the only evidence available from the geological record as of today, then thrust earth- quakes on the caldera fault were caused by uplift movement, and the driving force within Bárðarbunga was likely to be increased pressure within the volcano (Figure 5; Bjarnason and Þorbjarnardóttir, 1996). The other explanation, with outward dipping caldera fault, would be decreased pressure with subsidence (Einars- son, 1991). Reactivated normal faults have been ob- served in Iceland (Gudmundsson et al., 2008), and in the present work it is proposed that the observation of Fridleifsson (1983) should be interpreted as a reacti- vated inward dipping ring fault. Nettles and Ekström (1998) assume downward movement on outward dip- ping cone (ring) fault structure below an expanding JÖKULL No. 64, 2014 73
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.