Læknablaðið : fylgirit - 05.01.2015, Qupperneq 70

Læknablaðið : fylgirit - 05.01.2015, Qupperneq 70
X V I I V Í S I N D A R Á Ð S T E F N A H Í F Y L G I R I T 8 2 70 LÆKNAblaðið/Fylgirit 82 2015/101 metótrexat við sóragigt hér á landi. Efniviður og aðferðir: Fengnar voru upplýsingar úr ICEBIO- gagnagrunninum um einstaklinga með sóragigt á sinni fyrstu meðferð með TNFα hemli þar sem til staðar voru upplýsingar um sjúkdóms- virkni við upphaf meðferðar og að minnsta kosti einn af eftirtöldum tímapunktum; 13 vikur, 26 vikur eða 52 vikur (n =83). Notast var við skilmerkin ACR20, ACR50, ACR70 og EULAR response criteria til að meta árangur. Bornir voru saman þeir sem fengu metótrexat samhliða TNFα hemli við þá sem aðeins fengu TNFα hemil. Niðurstöður: Samhliða meðferð með TNFα hemli og metótrexat reynd- ist ekki skila marktækt betri meðferðarárangri fyrr en eftir 52 vikna meðferð. Við þann tímapunkt höfðu 18% sjúklinga á TNFα hemli, en 65% af þeim sem voru jafnframt á metótrexat náð ACR50 (p=0,0165); fyrir ACR20 voru hlutfallið 42% og 65% (p=0,0426). Eftir 52 vikur hafði um helmingur sjúklinga á TNFα hemli, en 92% sjúklinga á samsettri meðferð náð góðri EULAR svörun (p=0,0004) Ályktanir: Niðurstöður rannsóknarinnar benda til þess að sjúklingar á samhliða meðferð með metótrexat og TNFα hemli séu líklegri til að ná betri meðferðarárangri til langs tíma en þeir sem eingöngu fá TNFα hemil. V 41 Sulfobutylether-β-cyclodextrin/chitosan particles and their physicochemical characteristics Phennapha Saokham, Zoltán Fülöp, Þorsteinn Loftsson Faculty of Pharmaceutical Sciences, University of Iceland phs3@hi.is Introduction: Chitosan particles can be prepared by a number of techni- ques but one of the most promising one is ionotropic gelation which is based on ionic interactions between the polycationic chitosan and a polyanionic polymer. These anion sources can be different types of CDs, for example sulfobutylether β-cyclodextrin (SBEβCD). Methods and data: SBEβCD/CS particles were prepared by mixing SBEβCD and CS solutions of equal weight concentrations. The encap- sulation efficiency (EE) of HC in the particles, the mean hydrodynamic diameter and polydispersity index and drug permeation were determ- ined. Results: The particles become larger and contain larger number of SBEβCD molecules with increasing CS:SBEβCD ratio but at the same time their ability to take up HC molecules decreases. The flux of HC from the SBEβCD complexes is higher than the HC flux from the loaded particles at identical SBEβCD concentration. Conclusions: Due to the lipophilic nature of the CD cavities the very hydrophilic NPs could be loaded with poorly water-soluble lipophilic drugs such as HC. The size of the NPs (diameter 200 to 1000 nm) and the drug release rate could be controlled by changing the initial concentration of SBEβCD and CS during the particle preparation. In aqueous solutions the particles were characterized as metastable whe- reas self-assembled cyclodextrin nanoparticles readily dissociate upon media dilution. V 42 Stability of liposomes: effect of size, layer by layer electrostatic deposition and dehydration Ragnhildur Einarsdóttir1, Benjamin Zeeb2, Monika Gibis2, Kristberg Kristbergsson1, Jochen Weiss2 1Faculty of Food Science and Nutrition, University of Iceland, 2Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim rae22@hi.is Introduction: Liposomes are used as delivery systems for bioactives in pharmaceuticals, cosmetics and foods. Liposomes subjected to dehydration are susceptible to fusion and leakage. With the layer by layer electrostatic depositioning, polyelectrolytes adsorb to the liposome surface to form a monolayer. The aim of the study was to increase the stability of liposomes through coating with cold water fish skin gelatin and to study the influence of liposome size on layering properties and physical stability during dehydration. Methods and data: Liposomes were prepared with high pressure homogenization and extrusion through polycarbonate membranes in 10 mM acetate buffer at pH 3.8 to produce three liposomal dispersions of different sizes. Cold water skin fish gelatin was used to coat the liposomes. Liposomal dispersions were placed in dialysis tubes where an outer osmotic pressure created by 0.5 M sucrose, dehydrated the samples with time. Results: The ζ-potential changed from -55 mV for uncoated liposomes to 25 mV for coated liposomes. The relative weight and change in size was measured with a static light scatterer. Original size of liposomes influenced the stability of liposomes during osmotic dehydration, with the 0.09 µm in diameter liposomes being stable for 60 min, compared to 30 minutes for liposomes of 0.40 µm and 2.73 µm. Secondary liposomes were more stable towards aggregation and size change. Conclusions: The results show that cold water fish gelatin can be used to coat liposomes using the layer by layer electrostatic dispositioning method. Moreover it shows that the interfacial membrane protects the liposomes from aggregation and fusion during dehydration. V 43 New nucleosides produced by the marine sponge Geodia macandrewi Margarida Costa1,2, Hongbing Liu1, Eydís Einarsdóttir1,2, Margrét Þorsteinsdóttir1,2, Sesselja Ómarsdóttir1 1Faculty of Pharmaceutical Sciences, University of Iceland, 2ArcticMass sesselo@hi.is Introduction: The ocean exploration for the discovery of new natural compounds has emerged as a promising field in drug-discovery. Among all the biological diversity, marine sponges are recognized as the richest source of marine natural compounds. The first studies looking for mar- ine-derived natural compounds led to the discovery of the nucleosides spongouridine and spongothymidine, that represented the basis for Ara-C and Ara-A. Those compounds were later commercialized as anticancer and antiviral drugs, respectively. To date over 30 nucleosides have been characterized from sponges and they have been shown to possess various bioactivities. Methods and data: In this study, the sponge Geodia macandrewi, collected in deep waters southwest of Iceland was submitted to CH2Cl2:CH3OH (1:1) extraction. The extract was further fractionated by modified Kupchan solvent partition and a polar fraction revealed the presence of several nucleosides. Those compounds were isolated by preparative HPLC. 1D and 2D NMR spectroscopy and QTOF-MS/MS were used to
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160
Qupperneq 161
Qupperneq 162
Qupperneq 163
Qupperneq 164
Qupperneq 165
Qupperneq 166
Qupperneq 167
Qupperneq 168
Qupperneq 169
Qupperneq 170
Qupperneq 171
Qupperneq 172
Qupperneq 173

x

Læknablaðið : fylgirit

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Læknablaðið : fylgirit
https://timarit.is/publication/991

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.