Jökull

Ataaseq assigiiaat ilaat

Jökull - 01.01.2021, Qupperneq 42

Jökull - 01.01.2021, Qupperneq 42
Magnússon et al. glacial eruption can melt large volumes of ice and trigger powerful jökulhlaups. The Katla central vol- cano beneath the Mýrdalsjökull ice cap (Figure 1) is renowned for violent eruptions that are often accom- panied by devastating jökulhlaups and tephra fall (e.g. Eyþórsson, 1945; Þórarinsson, 1975; Larsen, 2000, 2010; Larsen et al., 2013; Óladóttir et al., 2008, 2014; Smith and Haraldsson, 2005; Guðmundsson et al., 2005a, 2005b, 2007, 2008, 2013; Elíasson et al., 2005, 2006; Björnsson et al., 2000; Tómasson, 1996; Russel et al., 2010; Björnsson, 2010, 2017). Katla has also been identified as one of the largest volcanic sources of CO2 on the planet (Ilyinskaya et al., 2018). In view of the above, Mýrdalsjökull was an ob- vious target for early efforts to survey and map the bedrock of Icelandic glaciers. The first attempt ap- plied seismic reflection at nine survey sites in 1955 (Rist, 1967a), suggesting an ice thickness in the cen- tral plateau of 200–370 m. In 1977 a prototype of an analogue low frequency radar designed for use on temperate glaciers (Sverrisson et al., 1980) was used to survey a few ice thickness profiles on the cen- tral plateau of Mýrdalsjökull (Björnsson, 1978). The radar system was designed to operate at frequencies low enough (3–10 MHz) to penetrate up to 1000 m thick temperate ice and reflect back enough energy from the bedrock for detection of ice thickness. In temperate ice water pockets and tunnels on various length scales up to tens of metres scatter energy from frequencies higher than tens of MHz, leaving little or no energy reflected back from the bed. An overview of the use of the low frequency radar systems to sys- tematically map the bedrock of all major ice caps in Iceland, starting in 1978, was given by Björnsson and Pálsson (2020). The survey of Mýrdalsjökull in 1977 showed an undulating bed with 500 to 600 m thick ice in the central part and confirmed the existence of a 100 km2 caldera below Mýrdalsjökull (Björnsson, 1978), already suggested from interpretation of Land- sat images (Sigbjarnason, 1973). A distinct internal reflector at ∼300 m was observed and interpreted as the 1918 tephra layer. In 1991 a second RES-survey was done (Figure 2a,b), now with a fully developed version of the analogue RES-system, and Loran-C and GPS for navigation, covering most of Mýrdals- jökull, including the central part, with sounding lines at 1–2 km intervals. From this survey a topographic map (referred hereafter as a Digital Elevation Model; DEM) of both the surface and bedrock was created (Björnsson et al. (2000). This allowed determination of ice and water divides, estimation of the ice volume, location of the caldera rim and twelve subglacial geo- thermal areas, and discussion of how eruption sites re- late to the bedrock topography. In the 1991 survey the internal layer seen in the 1977 profiles was visible in a large portion of the caldera, again interpreted as the 1918 tephra layer. A study of the depth of the layer suggested an average mass balance in the caldera since 1918 of 3.5–4.5 m a−1 water equivalent (Brandt et al., 2005). The ice thickness was also surveyed at about 70 sites on Sólheimajökull (see Figure 1a for place name locations), an outlet glacier in southwest Mýrdalsjökull (MacIntosh et al., 2000). The glaciol- ogy group of the Institute of Earth Science (IES) ad- ditionally conducted RES point measurements at the northeast corner of the caldera plateau (at Entujökull outlet), profiles across the K7 depression (ice caul- dron, Figure 1a) that formed in 1999, and between Kötlukollar and Háabunga in 2000. An RES-profile was collected at Kötlujökull in 2003, plus 60 RES point measurements on the Kötlujökull snout in 2004 (Pálsson et al., 2005). Since 2001 the mass balance of Mýrdalsjökull has been measured in most years at a few sites in a col- laborative effort of the Iceland Glaciological Society (JÖRFÍ), IES and the Icelandic Met Office (Ágústs- son et al. 2013). The thickness of winter snow de- posited in the elevation range 1300–1500 m asl on the caldera plateau is typically 10–12 m by Mid-May, cor- responding to a winter balance of 5–6 m (water equiv- alent thickness). This is comparable to the winter accumulation measured on the 1800 m high plateau of Öræfajökull (Guðmundsson, 2000), the site where highest precipitation levels in Iceland have been mea- sured. Ablation rates on Mýrdalsjökull (as a func- tion of elevation) are similar to those recorded on the Breiðamerkurjökull outlet of southern Vatnajökull (Ágústsson et al., 2013), resulting in an annual accu- mulation that typically varies between 2–5 m (water equivalent thickness) on the caldera plateau. 40 JÖKULL No. 71, 2021
Qupperneq 1
Qupperneq 2
Qupperneq 3
Qupperneq 4
Qupperneq 5
Qupperneq 6
Qupperneq 7
Qupperneq 8
Qupperneq 9
Qupperneq 10
Qupperneq 11
Qupperneq 12
Qupperneq 13
Qupperneq 14
Qupperneq 15
Qupperneq 16
Qupperneq 17
Qupperneq 18
Qupperneq 19
Qupperneq 20
Qupperneq 21
Qupperneq 22
Qupperneq 23
Qupperneq 24
Qupperneq 25
Qupperneq 26
Qupperneq 27
Qupperneq 28
Qupperneq 29
Qupperneq 30
Qupperneq 31
Qupperneq 32
Qupperneq 33
Qupperneq 34
Qupperneq 35
Qupperneq 36
Qupperneq 37
Qupperneq 38
Qupperneq 39
Qupperneq 40
Qupperneq 41
Qupperneq 42
Qupperneq 43
Qupperneq 44
Qupperneq 45
Qupperneq 46
Qupperneq 47
Qupperneq 48
Qupperneq 49
Qupperneq 50
Qupperneq 51
Qupperneq 52
Qupperneq 53
Qupperneq 54
Qupperneq 55
Qupperneq 56
Qupperneq 57
Qupperneq 58
Qupperneq 59
Qupperneq 60
Qupperneq 61
Qupperneq 62
Qupperneq 63
Qupperneq 64
Qupperneq 65
Qupperneq 66
Qupperneq 67
Qupperneq 68
Qupperneq 69
Qupperneq 70
Qupperneq 71
Qupperneq 72
Qupperneq 73
Qupperneq 74
Qupperneq 75
Qupperneq 76
Qupperneq 77
Qupperneq 78
Qupperneq 79
Qupperneq 80
Qupperneq 81
Qupperneq 82
Qupperneq 83
Qupperneq 84
Qupperneq 85
Qupperneq 86
Qupperneq 87
Qupperneq 88
Qupperneq 89
Qupperneq 90
Qupperneq 91
Qupperneq 92
Qupperneq 93
Qupperneq 94
Qupperneq 95
Qupperneq 96
Qupperneq 97
Qupperneq 98
Qupperneq 99
Qupperneq 100
Qupperneq 101
Qupperneq 102
Qupperneq 103
Qupperneq 104
Qupperneq 105
Qupperneq 106
Qupperneq 107
Qupperneq 108
Qupperneq 109
Qupperneq 110
Qupperneq 111
Qupperneq 112
Qupperneq 113
Qupperneq 114
Qupperneq 115
Qupperneq 116
Qupperneq 117
Qupperneq 118
Qupperneq 119
Qupperneq 120
Qupperneq 121
Qupperneq 122
Qupperneq 123
Qupperneq 124
Qupperneq 125
Qupperneq 126
Qupperneq 127
Qupperneq 128
Qupperneq 129
Qupperneq 130
Qupperneq 131
Qupperneq 132
Qupperneq 133
Qupperneq 134
Qupperneq 135
Qupperneq 136
Qupperneq 137
Qupperneq 138
Qupperneq 139
Qupperneq 140
Qupperneq 141
Qupperneq 142
Qupperneq 143
Qupperneq 144
Qupperneq 145
Qupperneq 146
Qupperneq 147
Qupperneq 148
Qupperneq 149
Qupperneq 150
Qupperneq 151
Qupperneq 152
Qupperneq 153
Qupperneq 154
Qupperneq 155
Qupperneq 156
Qupperneq 157
Qupperneq 158
Qupperneq 159
Qupperneq 160
Qupperneq 161
Qupperneq 162
Qupperneq 163
Qupperneq 164
Qupperneq 165
Qupperneq 166
Qupperneq 167
Qupperneq 168
Qupperneq 169
Qupperneq 170
Qupperneq 171
Qupperneq 172
Qupperneq 173
Qupperneq 174
Qupperneq 175
Qupperneq 176
Qupperneq 177
Qupperneq 178
Qupperneq 179

x

Jökull

Direct Links

Hvis du vil linke til denne avis/magasin, skal du bruge disse links:

Link til denne avis/magasin: Jökull
https://timarit.is/publication/1155

Link til dette eksemplar:

Link til denne side:

Link til denne artikel:

Venligst ikke link direkte til billeder eller PDfs på Timarit.is, da sådanne webadresser kan ændres uden advarsel. Brug venligst de angivne webadresser for at linke til sitet.