Náttúrufræðingurinn

Volume

Náttúrufræðingurinn - 2020, Page 93

Náttúrufræðingurinn - 2020, Page 93
Tímarit Hins íslenska náttúrufræðifélags 93 Samkvæmt athugunum árið 2017 höfðu framangreindar þörungategundir þá náð sér aftur nokkuð vel á strik.59 Vegna óvissu um framhaldið er mik- ilvægt að fylgjast áfram grannt með þróun þörungaflórunnar í vatninu, rétt eins og á við um vöktun Þingvallavatns í heild. Ástand vistkerfisins nú kann að vera viðkvæmara og sveiflukenndara en áður vegna hlýnunar og annarra sam- verkandi þátta. Til þessa benda einnig niðurstöður vöktunar á svifdýrafánu Þingvallavatns sem greint er frá annars staðar í þessu hefti.60 ENGLISH SUMMARY WARMING OF LAKE ÞINGVALLAVATN AND THERMAL PROCESSES IN THE LAKE In this study we account for the ther- mal evolution of Lake Þingvallavatn, SW-Iceland, on a yearly basis over a 55 year period, during 1962–2017. We also look on thermal stratification processes in the lake, with monitoring data availa- ble for the period 2011–2016. Lake Þingvallavatn is the second larg- est lake in Iceland, 83 km2, 2.9 km3 in vol- ume, with a mean depth of 34 m and max depth of 114 m. The lake is fed mainly by spring-water inlets, amounting to ca. 90% of the total inlet, 100 m3/s. The catchment is 1,300 km2, composed largely of lava bedrock from Holocene, and reaching north on to the glacier Langjökull in the highlands. Presently, the glacial compo- nent of the lake´s inlet is estimated to be 15–20 m3/s, and the water is estimated to take a decade or so to reach the lake. Most of the spring-water entering the lake is 2.7–4.0°C all year round. The retention time is estimated to be around 330 days. Measurements of water tempera- ture at the lake outlet were obtained at two stations from the National Power Company of Iceland, with a minimum of 1–4 records per day every year over the period 1962–1994 and 2000–2017 (Fig. 1), covering 47 years. During 2000–2017, measurements were done 24–48 times per day. Analyses of lake temperature were done on daily means, usually calculated from 3–48 recordings per day, and daily means were used to calculate monthly and annual means. In all, 304.678 temperature recordings, giving 17.153 daily means, were used for comparison of annual means over the 47-year period with recordings. To verify the reliability of the lake outlet temperature as an indicator of the water temperature within the lake itself, we performed linear regression analyses on temperature recordings performed simultaneously at the outlet (station LV2) and at the pelagic station (NK2) in middle of the lake (Figs. 1 and 2, Table 1). At the pelagic station, meas- urements were done by data loggers at 1 hour interval, at 4, 8, 16, 24, 32 and 40 m depth during 5.6.–24.10. 2012, 6.6.–14.10. 2013, 9.5.–24.10. 2014 and 23.5.–25.10. 2015. This data, in all 596 measure- ments, defined the data set for the linear regression. We also used measurements from the data loggers to analyse thermal stratification development in the lake in the period 2011–2016. Temperature of Lake Þingvallavatn has increased significantly for the past 30 years, from the end of the cold wave that lasted between 1965–1986 and onwards, congruent with a rise in air temperature in the catchment area (Figs. 3 and 4). Annual mean lake tem- perature has risen on average by ca. 0.15°C per decade, similar to warming observed in other large, deep lakes in the northern heimisphere.13,43 Temperature has risen in all months, except February-May, with the most profound warming occurring in sum- mer (June-August), with an increase of 1.3–1.6°C per month on average during 1962–2016, closely followed by autumn and winter (September-January), with a rise of 0.7–1.1°C on average per month (Table 2). Because of warming, freez- ing of Þingvallavatn occurs less fre- quently than before (Fig. 6). If the lake freezes, it does so nowadays later in the winter and ice breaks up sooner in the spring than 30 years or so ago. Warm- ing of the lake may also have resulted in stronger thermal stratification of the lake, as observed by greater tem- perature difference between epi- and hypolimnion during 2010–2016 com- pared to 1974–1981. The ecological consequences of warming of Lake Þingvallavatn are dis- cussed, some of which may already have been verified, e.g. by increased primary production in the lake as measured by chlorophyll-a concentrations.16,26,29 Also, in relation to warming and response of primary producers, nitrogen loads to Lake Þingvallavatn appear to have increased, measuring 29–42 μg/l NO3 in inlet springs of the lake in 1975, compared to 27–68 μg/l NO3 in the years 2007–2016.39 The aforementioned changes are in line with those observed in freshwater ecosystems elsewhere at northerly latitudes.15,46,53–55 Recent changes, without precedent, have also taken place in species com- position of phytoplankton in Þingvalla- vatn. Populations of large diatomes of the genus Aulacoseira (A. islandica and A. italica), along with Asterionella formosa, the principal species in primary pro- duction in the lake for decades, suddenly crashed in 2016 and the species were not found in monitoring samples.26,59 Similar changes in lake diatom commu- nities in northern latitudes have been ascribed to concurrent effects of warm- ing and eutrophication.57,58
Page 1
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7
Page 8
Page 9
Page 10
Page 11
Page 12
Page 13
Page 14
Page 15
Page 16
Page 17
Page 18
Page 19
Page 20
Page 21
Page 22
Page 23
Page 24
Page 25
Page 26
Page 27
Page 28
Page 29
Page 30
Page 31
Page 32
Page 33
Page 34
Page 35
Page 36
Page 37
Page 38
Page 39
Page 40
Page 41
Page 42
Page 43
Page 44
Page 45
Page 46
Page 47
Page 48
Page 49
Page 50
Page 51
Page 52
Page 53
Page 54
Page 55
Page 56
Page 57
Page 58
Page 59
Page 60
Page 61
Page 62
Page 63
Page 64
Page 65
Page 66
Page 67
Page 68
Page 69
Page 70
Page 71
Page 72
Page 73
Page 74
Page 75
Page 76
Page 77
Page 78
Page 79
Page 80
Page 81
Page 82
Page 83
Page 84
Page 85
Page 86
Page 87
Page 88
Page 89
Page 90
Page 91
Page 92
Page 93
Page 94
Page 95
Page 96
Page 97
Page 98
Page 99
Page 100
Page 101
Page 102
Page 103
Page 104
Page 105
Page 106
Page 107
Page 108
Page 109
Page 110
Page 111
Page 112
Page 113
Page 114
Page 115
Page 116
Page 117
Page 118
Page 119
Page 120
Page 121
Page 122
Page 123
Page 124
Page 125
Page 126
Page 127
Page 128
Page 129
Page 130
Page 131
Page 132
Page 133
Page 134
Page 135
Page 136
Page 137
Page 138
Page 139
Page 140

x

Náttúrufræðingurinn

Direct Links

If you want to link to this newspaper/magazine, please use these links:

Link to this newspaper/magazine: Náttúrufræðingurinn
https://timarit.is/publication/337

Link to this issue:

Link to this page:

Link to this article:

Please do not link directly to images or PDFs on Timarit.is as such URLs may change without warning. Please use the URLs provided above for linking to the website.